Skip to main content

Advertisement

Log in

Bifurcation analysis in the system with the existence of two stable limit cycles and a stable steady state

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Van der Pol–Duffing oscillator, which can be used a model for many dynamical system, has been widely concerned. However, most of the systems by scholars are either stable steady states or limit cycles. Here, the self-sustained oscillator with the coexistence of steady state and limit cycles, which is famous for describing the flutter of airfoils with large span ratio in low-speed wind tunnels, is treated in this paper. Using the energy balance method, the deterministic bifurcation of the tristable system with time-delay feedback is investigated. The presence of time-delay feedback expands the bifurcation range of the parameters, making the bifurcation phenomenon more abundant. In addition, according to the stationary probability density function obtained by the stochastic averaging method, stochastic bifurcation of the system with time-delay feedback and noise is explored theoretically. The numerical results confirm the correctness of the theoretical analysis. Transition between the unimodal structure, the bimodal structure and the trimodal structure is found. Many rich bifurcations are available by adjusting the time-delay and noise intensity, which may be conductive to achieve the desired phenomenon in the real-world application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: The Theory of Oscillations. Pergamon, Oxford (1966)

    MATH  Google Scholar 

  2. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Goldbeter, A., Gonze, D., Houart, G., Leloup, J.C., Halloy, J., Dupont, G.: From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11(1), 247 (2001)

    Article  Google Scholar 

  4. Brun, E., Derighetti, B., Meier, D., Holzner, R., Ravani, M.: Observation of order and chaos in a nuclear spin-flip laser. J. Opt. Soc. Am. B 2(1), 156 (1985)

    Article  Google Scholar 

  5. Kwuimy, C.A.K., Nataraj, C.: In: Structural Nonlinear Dynamics and Diagnosis, Springer Proceedings in Physics, vol. 168, Springer Proceedings in Physics, vol. 168, pp. 97–123. Springer, Cham (2015)

  6. Alamgir, M., Epstein, I.R.: Systematic design of chemical oscillators. 17. Birhythmicity and compound oscillation in coupled chemical oscillators: chlorite–bromate–iodide system. J. Am. Chem. Soc. 105(8), 2500 (1983)

    Article  Google Scholar 

  7. Yan, J., Goldbeter, A.: Multi-rhythmicity generated by coupling two cellular rhythms. J. R. Soc. Interface 16(152), 20180835 (2019)

    Article  Google Scholar 

  8. Kaiser, F.: Coherent Excitations in Biological Systems: Specific Effects in Externally Driven Self-Sustained Oscillating Biophysical Systems. Springer, Berlin (1983)

    Google Scholar 

  9. Chéagé Chamgoué, A., Yamapi, R., Woafo, P.: Bifurcations in a birhythmic biological system with time-delayed noise. Nonlinear Dyn. 73(4), 2157 (2013)

    Article  MathSciNet  Google Scholar 

  10. Kar, S., Ray, D.S.: Large fluctuations and nonlinear dynamics of birhythmicity. Europhys. Lett. (EPL) 67(1), 137 (2004)

    Article  Google Scholar 

  11. Decroly, O., Goldbeter, A.: Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. 22, 6917 (1982)

    Article  MathSciNet  Google Scholar 

  12. Leloup, J.C., Goldbeter, A.: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 198(3), 445 (1999)

    Article  Google Scholar 

  13. Stich, M., Ipsen, M., Mikhailov, A.S.: Self-organized stable pacemakers near the onset of birhythmicity. Phys. Rev. Lett. 86, 4406 (2001)

    Article  Google Scholar 

  14. De la Fuente, I.M.: Diversity of temporal self-organized behaviors in a biochemical system. Biosystems 50(2), 83 (1999)

    Article  Google Scholar 

  15. Kadji, H.E., Orou, J.C., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos Solitons Fractals 32(2), 862 (2007)

    Article  MathSciNet  Google Scholar 

  16. Yamapi, R., Filatrella, G., Aziz-Alaoui, M.A.: Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos 20(1), 013114 (2010)

    Article  MathSciNet  Google Scholar 

  17. Yamapi, R., Chamgoué, A.C., Filatrella, G., Woafo, P.: Coherence and stochastic resonance in a birhythmic van der Pol system. Eur. Phys. J. B 90(8), 153 (2017)

    Article  MathSciNet  Google Scholar 

  18. Biswas, D., Banerjee, T., Kurths, J.: Effect of filtered feedback on birhythmicity: suppression of birhythmic oscillation. Phys. Rev. E 99, 062210 (2019)

    Article  Google Scholar 

  19. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity through conjugate self-feedback: theory and experiment. Phys. Rev. E 94, 042226 (2016)

    Article  Google Scholar 

  20. Ghosh, P., Sen, S., Riaz, S.S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83, 036205 (2011)

    Article  MathSciNet  Google Scholar 

  21. Guo, Q., Sun, Z., Xu, W.: Bifurcations in a fractional birhythmic biological system with time delay. Commun. Nonlinear Sci. Numer. Simul. 72, 318 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ning, L., Ma, Z.: The effects of correlated noise on bifurcation in birhythmicity driven by delay. Int. J. Bifurc. Chaos 28(10), 1850127 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yang, T., Cao, Q.: Noise-induced phenomena in a versatile class of prototype dynamical system with time delay. Nonlinear Dyn. 92(2), 511 (2018)

    Article  Google Scholar 

  24. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity: a self-feedback approach. Chaos 27(6), 063110, 11 (2017)

  25. Kwuimy, C.A.K., Kadji, H.G.E.: Recurrence analysis and synchronization of oscillators with coexisting attractors. Phys. Lett. A 378(30–31), 2142 (2014)

    Article  MathSciNet  Google Scholar 

  26. Xu, Y., Gu, R., Zhang, H., Xu, W., Duan, J.: Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise. Phys. Rev. E 83, 056215 (2011)

    Article  Google Scholar 

  27. Sun, Z., Fu, J., Xiao, Y., Xu, W.: Delay-induced stochastic bifurcations in a bistable system under white noise. Chaos 25, 083102 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ning, L., Sun, Y.: Modulating bifurcations in a self-sustained birhythmic system by \(\alpha \)-stable Lévy noise and time delay. Nonlinear Dyn. 98(3), 2339 (2019)

    Article  Google Scholar 

  29. Hagedorn, P.: Non-Linear Oscillations. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  30. Lam, L.: Introduction to Nonlinear Physics. Springer, New York (1997)

    Book  Google Scholar 

  31. Zhu, W.: Random Vibration. Science Press, Beijing (1998)

    Google Scholar 

  32. Wu, Z., Hao, Y.: Stochastic P-bifurcation in tri-stable van der Pol–Duffing oscillator with multiplicative colored noise. Acta Phys. Sin. 64, 060501 (2015)

    Google Scholar 

  33. Martinez-Zerega, B.E., Pisarchik, A.N., Tsimring, L.: Using periodic modulation to control coexisting attractors induced by delayed feedback. Phys. Lett. A 318, 102 (2003)

    Article  MathSciNet  Google Scholar 

  34. Yamapi, R., Filatrella, G., Aziz-Alaoui, M.A.: Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos 20, 013114 (2010)

    Article  MathSciNet  Google Scholar 

  35. Ma, Z., Ning, L.: Bifurcation regulations governed by delay self-control feedback in a stochastic birhythmic system. Int. J. Bifurc. Chaos 27(13), 1750202 (2017)

    Article  MathSciNet  Google Scholar 

  36. Sun, Z., Zhang, J., Yang, X., Xu, W.: Taming stochastic bifurcations in fractional-order systems via noise and delayed feedback. Chaos 27, 083102 (2017)

    Article  MathSciNet  Google Scholar 

  37. Gaudreault, M., Drolet, F., Vinals, J.V.: Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation. Phys. Rev. E 85, 056214 (2012)

    Article  Google Scholar 

  38. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Nonlinear Mech. 21, 111 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Natural Science Foundation of China under Grant No. 11202120 and the Fundamental Research Funds for the Central Universities under No. GK201901008. The authors also would like to express their appreciation to the reviewers for their insightful reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Ning.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L. Bifurcation analysis in the system with the existence of two stable limit cycles and a stable steady state. Nonlinear Dyn 102, 115–127 (2020). https://doi.org/10.1007/s11071-020-05887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05887-x

Keywords

Navigation