Skip to main content
Log in

Outlier-resistant observer-based fuzzy sampled-data boundary control for the hot strip mill cooling process

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes an outlier-resistant non-fragile (ORNF) observer-based boundary control strategy for the hot strip mill (HSM) cooling process. First, measurement outliers and observer parameter perturbations are unavoidable due to the disturbances or faults of the HSM cooling process, so the ORNF observer is developed using the saturation function and the non-fragile control theory to improve the observation accuracy. Then, a sampled-data (SD) measurement is utilized, which avoids frequent updating of temperature sensors. Furthermore, a SD boundary control strategy is proposed by using the above observed temperature information, which only requires an actuator to be installed on one side of the system to regulate the temperature, reducing the control cost of the HSM cooling process effectively. Finally, sufficient conditions to ensure the stability of the HSM cooling process are derived through rigorous mathematical proof, and simulation results are presented to verify the effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the manuscript has no associated data.

References

  1. Peng, K.X., Zhang, K., Li, G., Zhou, D.H.: Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Eng. Pract. 21(4), 360–369 (2013)

    Article  Google Scholar 

  2. Wang, H.W., Jing, Y.W., Yu, C.: Guaranteed cost sliding mode control for looper-tension multivariable uncertain systems. Nonlinear Dyn. 80, 39–50 (2015)

    Article  MathSciNet  Google Scholar 

  3. Li, T.F., Chang, X.H.: Fuzzy output regulation of nonlinear time-delay distributed parameter systems with quantization and actuator failures: application to hot strip mill cooling process. IEEE Trans. Ind. Inform. 19(4), 6246–6257 (2023)

    Article  Google Scholar 

  4. Ma, L., Dong, J., Peng, K.X., Zhang, K.: A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process. Control Eng. Pract. 67, 43–51 (2017)

    Article  Google Scholar 

  5. Luo, H., Li, K., Kaynak, O., Yin, S., Huo, M.Y., Zhao, H.: A robust data-driven fault detection approach for rolling mills with unknown roll eccentricity. IEEE Trans. Control Syst. Technol. 28(6), 2641–2648 (2020)

    Article  Google Scholar 

  6. Wang, J.W., Zhang, J.F., Wu, H.N.: Boundary fuzzy output tracking control of nonlinear parabolic infinite-dimensional dynamic systems: application to cooling process in hot strip mills. IEEE Trans. Fuzzy Syst. 31(5), 1460–1473 (2023)

    Article  Google Scholar 

  7. Cui, R.Z., Wei, Y.H., Chen, Y.Q., Cheng, S.S., Wang, Y.: An innovative parameter estimation for fractional-order systems in the presence of outliers. Nonlinear Dyn. 89, 453–463 (2017)

    Article  Google Scholar 

  8. Fang, F., Liu, Y.M., Park, J.H., Liu, Y.J.: Outlier-resistant non-fragile control of T-S fuzzy neural networks with reaction-diffusion terms and its application in image secure communication. IEEE Trans. Fuzzy Syst. 31(9), 2929–2942 (2023)

    Article  Google Scholar 

  9. Qu, B.G., Wang, Z.D., Shen, B., Dong, H.L.: Outlier-resistant recursive state estimation for renewable-electricity-generation-based microgrids. IEEE Trans. Ind. Inform. 19(5), 7133–7144 (2023)

    Article  Google Scholar 

  10. Zhang, S.J., He, J.W., Yang, Y., Yan, T.L.: An outlier-resistant approach to observer-based security control for interval type-2 T-S fuzzy systems subject to deception attacks. IET Control Theory Appl. 17(1), 39–52 (2023)

    Article  MathSciNet  Google Scholar 

  11. Geng, H., Wang, Z.D., Mousavi, A., Alsaadi, F.E., Cheng, Y.H.: Outlier-resistant filtering with dead-zone-like censoring under try-once-discard protocol. IEEE Trans. Signal Process. 70, 714–728 (2022)

    Article  MathSciNet  Google Scholar 

  12. Shen, Y.X., Wang, Z.D., Shen, B., Dong, H.L.: Outlier-resistant recursive filtering for multisensor multirate networked systems under weighted try-once-discard protocol. IEEE Trans. Cybern. 51(10), 4897–4908 (2021)

    Article  Google Scholar 

  13. Yang, Y., He, Y.: Non-fragile observer-based robust control for uncertain systems via aperiodically intermittent control. Inf. Sci. 573, 239–261 (2021)

    Article  MathSciNet  Google Scholar 

  14. Boroujeni, E.A., Momeni, H.R.: An iterative method to design optimal non-fragile \(H_\infty \) observer for Lipschitz nonlinear fractional-order systems. Nonlinear Dyn. 80(4), 1801–1810 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wang, J.W., Yang, Y.: Parameter-dependent observer-based feedback compensator design of a space-time-varying PDE with application to a class of steelmaking processes. Int. J. Robust Nonlinear Control 31(16), 7640–7656 (2021)

    Article  MathSciNet  Google Scholar 

  16. He, W., He, X.Y., Zou, M.F., Li, H.Y.: PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Syst. Technol. 27(2), 790–797 (2019)

    Article  Google Scholar 

  17. Wei, C.Z., Li, J.M.: Finite-time non-fragile boundary feedback control for a class of nonlinear parabolic systems. Nonlinear Dyn. 103, 2753–2768 (2021)

    Article  Google Scholar 

  18. Wang, J., Krstic, M.: Output feedback boundary control of a heat PDE sandwiched between two ODEs. IEEE Trans. Autom. Control 64(11), 4653–4660 (2019)

    Article  MathSciNet  Google Scholar 

  19. Zhao, Z.J., Liu, Y., Luo, F.: Output feedback boundary control of an axially moving system with input saturation constraint. ISA Trans. 68, 22–32 (2017)

    Article  Google Scholar 

  20. Koga, S., Karafyllis, I., Krstic, M.: Towards implementation of PDE control for Stefan system: input-to-state stability and sampled-data design. Automatica 127, 109538 (2021)

    Article  MathSciNet  Google Scholar 

  21. Katz, R., Fridman, E.: Sampled-data finite-dimensional boundary control of 1D parabolic PDEs under point measurement via a novel ISS Halanay’s inequality. Automatica 135, 109966 (2022)

    Article  MathSciNet  Google Scholar 

  22. Wang, X.Y., Tang, Y., Fiter, C., Hetel, L.: Sampled-data distributed control for homo-directional linear hyperbolic system with spatially sampled state measurements. Automatica 139, 110183 (2022)

    Article  MathSciNet  Google Scholar 

  23. Mao, J., Zou, W..C., He, W..M., Xiang, Z..R.: Practical finite-time sampled-data output feedback stabilization for a class of upper-triangular nonlinear systems with input delay. IEEE Trans. Syst. Man Cybern. Syst 53(6), 3428–3439 (2023)

    Article  Google Scholar 

  24. Tamil Thendral, M., Ganesh Babu, T.R., Chandrasekar, A., Cao, Y.: Synchronization of Markovian jump neural networks for sampled data control systems with additive delay components: analysis of image encryption technique. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8774

    Article  Google Scholar 

  25. Han, X.X., Wu, K.N., Yao, Y.: Asynchronous boundary stabilization for T-S fuzzy Markov jump delay reaction-diffusion neural networks. J. Franklin Inst. 359(7), 2833–2856 (2022)

    Article  MathSciNet  Google Scholar 

  26. Wang, Z.P., Zhang, X., Wu, H.N., Huang, T.W.: Fuzzy boundary control for nonlinear delayed DPSs under boundary measurements. IEEE Trans. Cybern. 53(3), 1547–1556 (2023)

    Article  Google Scholar 

  27. Wang, F.J., Song, Y., Liu, C., He, A.R., Qiang, Y.: Multi-objective optimal scheduling of laminar cooling water supply system for hot rolling mills driven by digital twin for energy-saving. J. Process Control 122, 134–146 (2023)

    Article  Google Scholar 

  28. Benabdelhadi, A., Giri, F., Ahmed-Ali, T., Krstic, M., Fadil, H.E., Chaoui, F.-Z.: Adaptive observer design for wave PDEs with nonlinear dynamics and parameter uncertainty. Automatica 123, 109295 (2021)

    Article  MathSciNet  Google Scholar 

  29. Holta, H., Aamo, O.M.: Observer design for a class of semilinear hyperbolic PDEs with distributed sensing and parametric uncertainties. IEEE Trans. Autom. Control 67(1), 134–145 (2022)

    Article  MathSciNet  Google Scholar 

  30. Ghaderi, N.: A novel observer-based approach for the exponential stabilization of the string PDE with cubic nonlinearities. Syst. Control Lett. 165, 105273 (2022)

  31. Chandrasekar, A., Radhika, T., Zhu, Q.X.: State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach. Neural Process. Lett. 54, 327–345 (2022)

  32. Wang, J., Krstic, M.: Event-triggered output-feedback backstepping control of sandwich hyperbolic PDE systems. IEEE Trans. Autom. Control 67(1), 220–235 (2022)

    Article  MathSciNet  Google Scholar 

  33. Song, X.N., Wang, M., Ahn, C.K., Song, S.: Finite-time fuzzy bounded control for semilinear PDE systems with quantized measurements and Markov jump actuator failures. IEEE Trans. Cybern. 52(7), 5732–5743 (2022)

    Article  Google Scholar 

  34. Song, X.N., Zhang, Q.Y., Song, S., Ahn, C.K.: Improved event-triggered control for a chemical tubular reactor with singular perturbations. J. Process Control 112, 49–56 (2022)

    Article  Google Scholar 

  35. Zhao, Z.J., Liu, Z.J., He, W., Hong, K.-S., Li, H.X.: Boundary adaptive fault-tolerant control for a flexible Timoshenko arm with backlash-like hysteresis. Automatica 130, 109690 (2021)

    Article  MathSciNet  Google Scholar 

  36. Cao, Y., Chandrasekar, A., Radhika, T., Vijayakumar, V.: Input-to-state stability of stochastic Markovian jump genetic regulatory networks. Math. Comput. Simul. (2023). https://doi.org/10.1016/j.matcom.2023.08.007

    Article  Google Scholar 

  37. Chandrasekar, A., Radhika, T., Zhu, Q.X.: Further results on input-to-state stability of stochastic Cohen–Grossberg BAM neural networks with probabilistic time-varying delays. Neural Process. Lett. 54, 613–635 (2022)

    Article  Google Scholar 

  38. Radhika, T., Chandrasekar, A., Vijayakumar, V., Zhu, Q.X.: Analysis of Markovian jump stochastic Cohen–Grossberg BAM neural networks with time delays for exponential input-to-state stability. Neural Process. Lett. 55, 11055–11072 (2023)

  39. Song, X..N., Wang, M., Song, S., Ahn, C..K.: Intermittent state observer design for neural networks with reaction–diffusion terms using partial measurements. IEEE Trans. Syst. Man Cybern. Syst 53(8), 5224–5235 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 62203153 and 61976081, in part by the Natural Science Fund for Excellent Young Scholars of Henan Province under Grant 202300410127, in part by Key Scientific Research Projects of Higher Education Institutions in Henan Province under Grant 22A413001, in part by Top Young Talents in Central Plains under Grant Yuzutong (2021) 44, in part by Technology Innovative Teams in University of Henan Province under Grant 23IRTSTHN012, and in part by the Natural Science Fund for Young Scholars of Henan Province under Grant 222300420151.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 62203153 and 61976081, in part by the Natural Science Fund for Excellent Young Scholars of Henan Province under Grant 202300410127, in part by Key Scientific Research Projects of Higher Education Institutions in Henan Province under Grant 22A413001, in part by Top Young Talents in Central Plains under Grant Yuzutong (2021) 44, in part by Technology Innovative Teams in University of Henan Province under Grant 23IRTSTHN012, and in part by the Natural Science Fund for Young Scholars of Henan Province under Grant 222300420151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaona Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

The following Lyapunov function is constructed:

$$\begin{aligned} V(t)=&\int _{0}^{l}p(e^2(x,t)+s^2(x,t))dx. \end{aligned}$$
(33)

Then, along the (16) and (18), the derivative is calculated for (33) with respect to time as

$$\begin{aligned} \dot{V}(t) =&\int _{0}^{l} 2p(e(x,t)e_t(x,t)+s(x,t)s_t(x,t))dx. \end{aligned}$$
(34)

Next, substituting (16) and (18) into (34) yields

$$\begin{aligned}&\int _{0}^{l} 2pe(x,t)e_t(x,t)dx \nonumber \\&= \int _{0}^{l} 2pe(x,t)\{ \alpha e_{xx}(x,t){+} \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sigma _i e(x,t)\nonumber \\&\quad - {\tilde{L}}_i\phi (y(t_k) - {\hat{y}}(t_k))\} dx, \end{aligned}$$
(35)

and

$$\begin{aligned}&\int _{0}^{l} 2ps(x,t)s_t(x,t)dx\nonumber \\&\quad = \int _{0}^{l} 2ps(x,t)\{ \alpha s_{xx}(x,t) \nonumber \\&\qquad + \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t)) \sigma _is(x,t)\} dx, \end{aligned}$$
(36)

where using integral by parts and boundary condition (19), then \(\int _{0}^{l} 2p\alpha e(x,t)e_{xx}(x,t)dx\) in (35) is further deduced as

$$\begin{aligned} \int _{0}^{l} 2p\alpha e(x,t)e_{xx}(x,t)dx =&\int _{0}^{l} {l^{-1}}2p\alpha de^2(l,t)dx\nonumber \\&-2\int _{0}^{l} p\alpha e_x^2(x,t) dx. \end{aligned}$$
(37)

Similarly, combining integral by parts and boundary condition (17), \(\int _{0}^{l} 2p\alpha s(x,t)s_{xx}(x,t)dx\) in (36) is reexpressed as

$$\begin{aligned}&\int _{0}^{l} 2p\alpha s(x,t)s_{xx}(x,t)dx\nonumber \\&= 2pg\alpha s(l,t)\{ \sum \limits _{j = 1}^r \varpi _j(\varphi (x,t))k_j \{ s(l,t_k)- e(l,t_k)\} \}\nonumber \\&\quad + \int _{0}^{l}{l^{-1}}2p\alpha ds^2(l,t) dx- 2\int _{0}^{l} p\alpha s_x^2(x,t)dx. \end{aligned}$$
(38)

Employing Lemma 1 in [33], \(- 2\int _{0}^{l} p\alpha e_x^2(x,t) dx\) in (37) and \(- 2\int _{0}^{l} p\alpha s_x^2(x,t) dx\) in (38) are estimated as:

$$\begin{aligned}&- 2\int _{0}^{l} p\alpha e_x^2(x,t) dx\nonumber \\&\quad \le - 0.5l^{-2}\pi ^2\int _{0}^{l} p\alpha \{ e(x,t) - e(l,t)\}^2dx, \end{aligned}$$
(39)

and

$$\begin{aligned}&- 2\int _{0}^{l} p\alpha s_x^2(x,t) dx\nonumber \\&\quad \le -0.5l^{-2}\pi ^2\int _{0}^{l} p\alpha \{ s(x,t) - s(l,t)\}^2dx. \end{aligned}$$
(40)

Define \(\omega (l,t)=s(l,t) - s(l,t_k)\) and \(m(l,t) = e(l,t) - e(l,t_k)\), which means that

$$\begin{aligned} \begin{aligned} s(l,t) - s(l,t_k) - \omega (l,t) = 0, \end{aligned} \end{aligned}$$
(41)

and

$$\begin{aligned} \begin{aligned} e(l,t) - e(l,t_k)- m(l,t) = 0, \end{aligned} \end{aligned}$$
(42)

from which it is straightforward to obtain that the following equation holds:

$$\begin{aligned} 0 =&2\int _{0}^{l} [\omega (l,t)q_1 + s(l,t_k)q_2] [ s(l,t)\nonumber \\&- s(l,t_k) - \omega (l,t) ] dx, \end{aligned}$$
(43)

and

$$\begin{aligned} 0 =&2\int _{0}^{l} [ m(l,t)q_3 + e(l,t_k)q_4 ][ e(l,t)\nonumber \\&- e(l,t_k) - m(l,t) ]dx, \end{aligned}$$
(44)

where \(q_{\varrho }\ (\varrho =1,2,3,4)\) are arbitrary positive constants.

Then, according to Lemma 1, it is direct to obtain

$$\begin{aligned} \begin{aligned} \phi (e(l,t_k)) = {\tilde{\upsilon }} e(l,t_k) + \vartheta (e(l,t_k)), \end{aligned} \end{aligned}$$
(45)

and

$$\begin{aligned} \begin{aligned} \vartheta (e(l,t_k))\{ \vartheta (e(l,t_k)) - \upsilon e(l,t_k)\} \le 0. \end{aligned} \end{aligned}$$
(46)

Therefore, based on (34)–(46), the following formula can be derived:

$$\begin{aligned} \dot{V}(t) \le&\int _{0}^{l} 2pe(x,t)\left\{ \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sigma _i e(x,t) \right. \\&-\left. {\tilde{L}}_i\{ {\tilde{\upsilon }} e(l,t_k) + \vartheta (e(l,t_k))\right\} dx\\&+ \int _{0}^{l} {l^{-1}}2p\alpha de^2(l,t)dx\\&\mathrm{+} \int _{0}^{l} 2p s(x,t)\left\{ \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sigma _i s(x,t)\} dx\right. \\&\mathrm{+} 2p g\alpha s(l,t)\{ \sum \limits _{j = 1}^r \varpi _j(\varphi (x,t))k_j \{ s(l,t_k) \\&- e(l,t_k)\} \} + \int _{0}^{l}{l^{-1}}2p\alpha ds^2(l,t) dx\\&- 0.5l^{-2}\pi ^2\int _{0}^{l} p\alpha \{ e(x,t) - e(l,t)\}^2dx\\&-0.5l^{-2}\pi ^2\int _{0}^{l} p\alpha \{ s(x,t) - s(l,t)\}^2 dx\\&+ 2\int _{0}^{l} [ \omega (l,t)q_1+ s(l,t_k)q_2 ][ s(l,t) \\&- s(l,t_k) - \omega (l,t) ]dx + 2\int _{0}^{l} [ m(l,t)q_3\\&+ e(l,t_k)q_4 ][ e(l,t) - e(l,t_k)- m(l,t) ]dx\\&-\gamma _1\omega ^2(l,t) + \gamma _1c_1-\gamma _2 m^2(l,t)+\gamma _2c_2\\&-\left. 2\rho \vartheta (e(l,t_k))\{ \vartheta (e(l,t_k)) - \upsilon e(l,t_k)\right\} ,\\ \end{aligned}$$

where \(\omega ^2(l,t) \le c_1,m^2(l,t) \le c_2\) with given positive parameters \(c_1\) and \(c_2\) and \(\rho >0\) is a given constant.

Defining \(\zeta {=}col[e(x,t),e(l,t),\vartheta (e(l,t_k)),s(x,t),s(l,t), s(l,t_k),\omega (l,t),e(l,t_k),m(l,t)]\), one gets

$$\begin{aligned} \dot{V}(t)+\beta V(t) \le&\int _{0}^{l} \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sum \limits _{i = 1}^r \varpi _j(\varphi (x,t))\nonumber \\&\times \zeta ^T(x,t)\varPsi \zeta (x,t)dx+\gamma c_1{+}\gamma c_2, \end{aligned}$$
(47)

where \(\varPsi =\varOmega -\varXi <0\),

$$\begin{aligned} \begin{aligned} \varOmega = \left[ {\begin{array}{*{20}{c}} \hat{\varOmega }_{11}&{}0&{}{\hat{\varOmega }}_{13}\\ {*}&{}\varOmega _{22}&{}\varOmega _{23}\\ {*}&{}{*}&{}{\hat{\varOmega }}_{33} \end{array}} \right] \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \varXi = \left[ {\begin{array}{*{20}{c}} \varGamma _{11}&{}0&{}\varGamma _{13}\\ *&{}0&{}0\\ *&{}*&{}0 \end{array}} \right] \end{aligned} \end{aligned}$$

with

$$\begin{aligned} \hat{\varOmega }_{11}&= \left[ {\begin{array}{*{20}{c}} \aleph _1&{}0.25l^{-2}\pi ^2p\alpha &{}- pL_i\\ *&{}\aleph _2&{}0\\ *&{}*&{}-2\rho \end{array}} \right] ,\nonumber \\ {\hat{\varOmega }}_{13}&= \left[ {\begin{array}{*{20}{c}} 0&{}- p{\tilde{\upsilon }} L_i &{}0\\ 0&{}q_4+\rho \upsilon &{}q_3\\ 0&{} 0&{}0 \end{array}}\right] ,\nonumber \\ {\hat{\varOmega }}_{33}&= \left[ {\begin{array}{*{20}{c}} - 2q_1 - \gamma _1&{}0&{}0\\ *&{}- 2q_4&{}-q_3 - q_4\\ *&{}*&{}- 2q_3-\gamma _2 \end{array}} \right] ,\nonumber \\ \varGamma _{11}&= \left[ {\begin{array}{*{20}{c}} 0&{}0&{}p(D_i\varLambda _i(t)F_i)\\ {*}&{}0&{}0\\ {*}&{}{*}&{}0 \end{array}} \right] ,\nonumber \\ \varGamma _{13}&= \left[ {\begin{array}{*{20}{c}} 0&{}p{\tilde{\upsilon }} (D_i\varLambda _i(t)F_i)&{}0\\ {*}&{}0&{}0\\ {*}&{}{*}&{}0 \end{array}} \right] . \end{aligned}$$

Next, defining \(\varPhi _i=col[pD_i,0,0,0,0,0,0,0,0]\) and \(\varTheta _i = [0,0,F_i,0,0,0,0,{\tilde{\upsilon }} F_i,0]\), then we can obtain \(\varXi =\varPhi \varLambda (t)\varTheta +*\), where \(\varLambda _i^T(t)\varLambda _i(t) \le I\).

Therefore, one has

$$\begin{aligned} \begin{aligned} \varPsi = \varOmega -\varXi = \varOmega -\{\varPhi _i\varLambda _i(t)\varTheta _i+* \}<0. \end{aligned} \end{aligned}$$

Inspired by [8], the following equation is valid:

$$\begin{aligned} \begin{aligned} - \{ \varPhi _i\varLambda _i(t)\varTheta _i +* \} \le \chi ^{-1}\varPhi _i\varPhi _i^T + \chi \varTheta _i^T\varTheta _i. \end{aligned} \end{aligned}$$
(48)

Then, \(\varPsi = \varOmega - \varXi \) can be further derived as

$$\begin{aligned} \begin{aligned} \varOmega + \chi ^{-1}\varPhi _i\varPhi _i^T + \chi \varTheta _i^T\varTheta _i<0, \end{aligned} \end{aligned}$$
(49)

which, by utilizing the Schur Complement Lemma, is reformulated as (21), i.e., \(\varUpsilon <0\).

Since \(\varUpsilon <0\), based on (47), we can get

$$\begin{aligned} \begin{aligned} \dot{V}(t)+\beta V(t) \le \gamma _1c_1+\gamma _2c_2. \end{aligned} \end{aligned}$$
(50)

Defining \(c=\gamma _1c_1+\gamma _2c_2\), it can be deduced that

$$\begin{aligned} V(t) \le&e^{ - \beta t}V(0) + \int _0^t e^{ - \beta (t - s)}cds\nonumber \\ =&e^{-\beta t}V(0) + c\beta ^{-1}. \end{aligned}$$
(51)

Therefore, according to Definition 1 in [37, 38], we complete the proof. \(\blacksquare \)

Proof of Theorem 3

Similar to the process of (33)–(40), one can directly get

$$\begin{aligned} \dot{V}(t) \le&\int _{0}^{l} 2pe(x,t)\{ \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sigma _i e(x,t)\\&\mathrm{-} {\tilde{L}}_i\{ {\tilde{\upsilon }} e(l,t){+} \vartheta (e(l,t))\} dx\\&+ \int _{0}^{l} {l^{-1}}2p\alpha de^2(l,t)dx\\&+ \int _{0}^{l}{l^{-1}} 2p\alpha ds^2(l,t) dx\\&+ \int _{0}^{l} 2ps(x,t)\left\{ \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t)) \sigma _is(x,t)\} dx\right. \\&+ 2pg\alpha s(l,t)\{ \sum \limits _{j = 1}^r \varpi _j(\varphi (x,t))k_j \{ s(l,t)\\&- e(l,t)\} \}{-} 0.5l^{-2}\pi ^2\!\int _{0}^{l}\!\! p\alpha \{ e(x,t) {-} e(l,t)\}^2dx\\&-0.5l^{-2}\pi ^2\int _{0}^{l} p\alpha \{ s(x,t) - s(l,t)\}^2 dx\\&-\left. 2\rho \vartheta (e(l,t))\{ \vartheta (e(l,t)) - \upsilon e(l,t)\right\} . \end{aligned}$$

Defining \(\zeta = col[e(x,t),e(l,t),\vartheta (e(l,t)),s(x,t),s(l,t)]\), one has

$$\begin{aligned} \dot{V}(t)+\beta V(t) \le&\int _{0}^{l} \sum \limits _{i = 1}^r \varpi _i(\varphi (x,t))\sum \limits _{i = 1}^r \varpi _j(\varphi (x,t))\nonumber \\&\times \zeta ^T(x,t)\varPsi '\zeta (x,t)dx, \end{aligned}$$
(52)

where \(\varPsi '=\varOmega '-\varXi '<0\),

$$\begin{aligned} \varOmega '&= \left[ {\begin{array}{*{20}{c}} {\tilde{\varOmega }}_{11}&{}{\tilde{\varOmega }}_{12}\\ {*}&{}{\tilde{\varOmega }}_{22} \end{array}} \right] ,\nonumber \\ {\tilde{\varOmega }}_{11}&= \left[ {\begin{array}{*{20}{c}} \aleph _1&{} 0.5\pi ^2l^{-2}p\alpha -p{\tilde{\upsilon }} L_i&{}- pL_i\\ *&{}\aleph _2&{}\rho \upsilon \\ *&{}*&{}-2\rho \end{array}} \right] ,\nonumber \\ {\tilde{\varOmega }}_{12}&=\left[ {\begin{array}{*{20}{c}} 0&{}0\\ 0&{}- {l }^{-1}pg\alpha k_j\\ 0&{}0 \end{array}} \right] ,\nonumber \\ {\tilde{\varOmega }}_{22}&=\left[ {\begin{array}{*{20}{c}} \aleph _3&{}{0.25l^{-2}\pi ^2p\alpha }\\ *&{}\ell _1 \end{array}} \right] , \end{aligned}$$

\(\varXi '=\varPhi '_i\varLambda _i(t)\varTheta ' _i+* \), \(\varPhi '_i = col[pD_i,0,0,0,0]\), and \(\varTheta ' _i = [0,{\tilde{\upsilon }} F_i,F_i,0,0]\).

Next, similar to the steps of (48)–(51), it can be deduced that (29) holds, which completes the proof. \(\blacksquare \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Peng, Z., Song, S. et al. Outlier-resistant observer-based fuzzy sampled-data boundary control for the hot strip mill cooling process. Nonlinear Dyn 112, 7057–7072 (2024). https://doi.org/10.1007/s11071-024-09404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09404-2

Keywords

Navigation