Skip to main content
Log in

An innovative parameter estimation for fractional-order systems in the presence of outliers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of parameter estimation for fractional-order linear systems when output signal is polluted by noise and outliers. Different from conventional filtering and semi-definite programming methods, the outliers detection problem is formulated as a matrix decomposition problem based on a novel nuclear norm method, which can not only make exact detection of outliers, but also estimate measurement noise at the same time. Then, a new parameter estimation approach is developed via a modified fractional-order gradient method with variable initial value mechanism and fractional-order parameter update law. With the adoption of recovered output signal, the proposed approach can obtain much better estimation performance, whose effectiveness and superiority are verified by strict mathematical analysis and detailed numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Machado, J.T., Galhano, A.M., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577–582 (2014)

    Article  Google Scholar 

  2. Wilkie, K., Drapaca, C.S., Sivaloganathan, S.: A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Appl. Math. Comput. 217(21), 8693–8704 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stress. 28(1), 83–102 (2004)

    Article  MathSciNet  Google Scholar 

  4. Petras, I., Sierociuk, D., Podlubny, I.: Identification of parameters of a half order system. IEEE Trans. Signal Process. 60(10), 5561–5566 (2012)

    Article  MathSciNet  Google Scholar 

  5. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, Y.S., Fan, Y., Wei, Y.H., Wang, Y., Liang, Q.: Subspace-based continuous-time identification of fractional order systems from non-uniformly sampled data. Int. J. Syst. Sci. 47(1), 122–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yan, Z.M.: Controllability of fractional order partial neutral functional integrodifferential inclusions with infinite delay. J. Frankl. Inst. 348(8), 2156–2173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lu, J.G., Chen, G.R.: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. Control 54(6), 1294–1299 (2009)

    Article  MathSciNet  Google Scholar 

  9. Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei, Y.H., Tse, P.W., Yao, Z., Wang, Y.: Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn. 86(2), 1047–1056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davy, M., Godsill, S.: Detection of abrupt spectral changes using support vector machines an application to audio signal segmentation. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 13–17 May 2002, Florida USA, 2, 1313–1316 (2002)

  12. Hazel, G.G.: Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. IEEE Trans. Geosci. Remote Sens. 38(3), 1199–1211 (2000)

    Article  Google Scholar 

  13. Desforges, M., Jacob, P., Cooper, J.: Applications of probability density estimation to the detection of abnormal conditions in engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 212(8), 687–703 (1998)

    Article  Google Scholar 

  14. Pearson, R.K.: Outliers in process modeling and identification. IEEE Trans. Control Syst. Technol. 10(1), 55–63 (2002)

    Article  Google Scholar 

  15. Xu, B.C., Liu, X.L.: Identification algorithm based on the approximate least absolute deviation criteria. Int. J. Autom. Comput. 9(5), 501–505 (2012)

    Article  Google Scholar 

  16. Lu, X.Q., Gong, T., Yan, P., Yuan, Y., Li, X.: Robust alternative minimization for matrix completion. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(3), 939–949 (2012)

    Article  Google Scholar 

  17. Yu, C., Wang, Q.G., Zhang, D., Wang, L., Huang, J.: System identification in presence of outliers. IEEE Trans. Cybern. 46(5), 1202–1216 (2016)

    Article  Google Scholar 

  18. Smith, R.S.: Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Autom. Control 59(11), 2886–2896 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y.S., Dai, Y., Liang, Q., Wang, Y.: Subspace-based continuous-time model identification using nuclear norm minimization. IFAC-PapersOnLine 48(28), 338–343 (2015)

    Article  Google Scholar 

  20. Liao, Z., Zhu, Z.T., Liang, S., Peng, C., Wang, Y.: Subspace identification for fractional order Hammerstein systems based on instrumental variables. Int. J. Control Autom. Syst. 10(5), 947–953 (2012)

    Article  Google Scholar 

  21. Zahoor, R.M.A., Qureshi, I.M.: A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res. 35(1), 14–21 (2009)

    Google Scholar 

  22. Tarasov, V.E.: Fractional generalization of gradient systems. Lett. Math. Phys. 73(1), 49–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Phys. A Stat. Mech. Appl. 367, 181–190 (2006)

    Article  Google Scholar 

  24. Pu, Y.F., Zhou, J.L., Zhang, Y., Zhang, N., Huang, G., Siarry, P.: Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural Netw. Learn. syst. 26(4), 653–662 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wei, Y.H., Sun, Z.Y., Hu, Y.S., Wang, Y.: On line parameter estimation based on gradient algorithm for fractional order systems. J. Control Decis. 2(4), 219–232 (2015)

    Article  MathSciNet  Google Scholar 

  26. Chen, Y.Q., Wei, Y.H., Liang, S., Wang, Y.: Indirect model reference adaptive control for a class of fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 39, 458–471 (2016)

    Article  MathSciNet  Google Scholar 

  27. Tan, Y., He, Z.Q., Tian, B.Y.: A novel generalization of modified LMS algorithm to fractional order. IEEE Signal Process. Lett. 22(9), 1244–1248 (2015)

    Article  Google Scholar 

  28. Abdeljawad, T., Jarad, F., Baleanu, D.: A semigroup like property for discrete Mittag-Leffler functions. Adv. Differ. Equ. 2012(1), 1 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, Y.H., Cheng, S.S., Chen, Y.Q., Wang, Y.: Time domain response of nabla discrete fractional order systems. IEEE Transactions on Automatic Control (2016) (Under Review)

  30. Mainardi, F.: On some properties of the Mittag-Leffler function \({E}_{\alpha }(-t^{\alpha })\), completely for \(t>0\) with \(0<\alpha <1\) (2013). ArXiv preprint arXiv:1305.0161

  31. Saha, D., Rao, G.P.: A general algorithm for parameter identification in lumped continuous systems—The Poisson moment functional approach. IEEE Trans. Autom. Control 27(1), 223–225 (1982)

  32. Garnier, H., Wang, L., Young, P.C.: Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance. In: Garnier, H., Wang, L., (eds) Identification of Continuous-time Models from Sampled Data, pp. 1–29. Springer, London (2008)

  33. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivativesan expository review. Nonlinear Dyn. 38(14), 155–170 (2004)

    Article  MATH  Google Scholar 

  34. Wei, Y.H., Gao, Q., Peng, C., Wang, Y.: A rational approximate method to fractional order systems. Int. J. Control Autom. Syst. 12(6), 1180–1186 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the associate editor and reviewers for their constructive comments based on which the presentation of this paper has been greatly improved. The work described in this paper was fully supported by the National Natural Science Foundation of China (No. 61573332, No. 61601431), the Fundamental Research Funds for the Central Universities (No. WK2100100028), the Anhui Provincial Natural Science Foundation (No.1708085QF141) and the General Financial Grant from the China Postdoctoral Science Foundation (No. 2016M602032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Wei, Y., Chen, Y. et al. An innovative parameter estimation for fractional-order systems in the presence of outliers. Nonlinear Dyn 89, 453–463 (2017). https://doi.org/10.1007/s11071-017-3464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3464-7

Keywords

Navigation