Skip to main content
Log in

Nonparametric dynamics modeling for underwater vehicles using local adaptive moment estimation Gaussian processes learning

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a nonparametric modeling scheme for underwater vehicles to achieve continuous-time dynamics modeling, which is essential for various marine missions, control, and navigation of these vehicles. The proposed scheme addresses the challenges posed by the nonlinearity, strong coupling, and complex structure of underwater vehicles through local adaptive moment estimation Gaussian processes learning. This approach constructs mappings between hydrodynamics and motion states while providing uncertainty estimates of the dynamics model. A local weighted strategy is used to construct local models to localize Gaussian processes learning, and an adaptive moment estimation method is designed using gradients of innovation to tune hyperparameters of Gaussian processes automatically. Moreover, a subspace index is created and updated based on feature distance measures to improve the computational efficiency of Gaussian processes learning in each local model. The developed scheme can perform real-time simulation considering environmental disturbances and is applied to a 6 degree-of-freedom autonomous underwater vehicle. The results demonstrate that this scheme is an effective mathematical modeling tool for underwater vehicles dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Wu, H., Niu, W., Wang, S., Yan, S.: An optimization method for control parameters of underwater gliders considering energy consumption and motion accuracy. Appl. Math. Model. 90, 1099–1119 (2021). https://doi.org/10.1016/j.apm.2020.10.015

    Article  MathSciNet  Google Scholar 

  2. Liu, X., Zhang, M., Yao, F., Chu, Z.: Observer-based region tracking control for underwater vehicles without velocity measurement. Nonlinear Dyn. 108(4), 3543–3560 (2022). https://doi.org/10.1007/s11071-022-07393-8

    Article  Google Scholar 

  3. Shen, C., Shi, Y.: Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 115, 108863 (2020). https://doi.org/10.1016/j.automatica.2020.108863

    Article  MathSciNet  Google Scholar 

  4. Liang, X., Li, Y., Peng, Z., Zhang, J.: Nonlinear dynamics modeling and performance prediction for underactuated AUV with fins. Nonlinear Dyn. 84(1, SI), 237–249 (2016). https://doi.org/10.1007/s11071-015-2442-1

    Article  Google Scholar 

  5. Gibson, S.B., Stilwell, D.J.: Hydrodynamic parameter estimation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 45(2), 385–394 (2020). https://doi.org/10.1109/JOE.2018.2877489

    Article  ADS  Google Scholar 

  6. Ahmed, F., Xiang, X., Jiang, C., Xiang, G., Yang, S.: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle. Ocean Eng. 268, 113300 (2023). https://doi.org/10.1016/j.oceaneng.2022.113300

    Article  Google Scholar 

  7. Nouri, N.M., Valadi, M., Asgharian, J.: Optimal input design for hydrodynamic derivatives estimation of nonlinear dynamic model of AUV. Nonlinear Dyn. 92(2), 139–151 (2018). https://doi.org/10.1007/s11071-017-3611-1

    Article  Google Scholar 

  8. Randeni, S., Forrest, A.L., Cossu, R., Leong, Z.Q., Ranmuthugala, D., Schmidt, V.: Parameter identification of a nonlinear model: replicating the motion response of an autonomous underwater vehicle for dynamic environments. Nonlinear Dyn. 91(2), 1229–1247 (2018). https://doi.org/10.1007/s11071-017-3941-z

    Article  Google Scholar 

  9. Gartner, N., Richier, M., Dune, C., Hugel, V.: Hydrodynamic parameters estimation using varying forces and numerical integration fitting method. IEEE Robot. Autom. Lett. 7(4), 11713–11719 (2022). https://doi.org/10.1109/LRA.2022.3205126

    Article  Google Scholar 

  10. Cardenas, P., Barros, E.A.: Estimation of AUV hydrodynamic coefficients using analytical and system identification approaches. IEEE J. Ocean. Eng. 45(4), 1157–1176 (2020). https://doi.org/10.1109/JOE.2019.2930421

    Article  ADS  Google Scholar 

  11. Deng, F., Levi, C., Yin, H., Duan, M.: Identification of an autonomous underwater vehicle hydrodynamic model using three Kalman filters. Ocean Eng. 229, 108962 (2021). https://doi.org/10.1016/j.oceaneng.2021.108962

    Article  Google Scholar 

  12. Sabet, M.T., Daniali, H.M., Fathi, A., Alizadeh, E.: Identification of an autonomous underwater vehicle hydrodynamic model using the extended, cubature, and transformed unscented Kalman filter. IEEE J. Ocean. Eng. 43(2), 457–467 (2018). https://doi.org/10.1109/JOE.2017.2694470

    Article  ADS  Google Scholar 

  13. Xu, H., Hinostroza, M.A., Wang, Z., Guedes Soares, C.: Experimental investigation of shallow water effect on vessel steering model using system identification method. Ocean Eng. 199, 106940 (2020). https://doi.org/10.1016/j.oceaneng.2020.106940

    Article  Google Scholar 

  14. Song, S., Liu, J., Guo, J., Zhang, C., Yang, T., Cui, J.: Efficient velocity estimation and location prediction in underwater acoustic sensor networks. IEEE Internet Things J. 9(4), 2984–2998 (2022). https://doi.org/10.1109/JIOT.2021.3094305

    Article  Google Scholar 

  15. Jing, G., Lei, L., Gang, Y.: Dynamic modeling and experimental analysis of an underwater glider in the ocean. Appl. Math. Model. 108, 392–407 (2022). https://doi.org/10.1016/j.apm.2022.03.034

    Article  MathSciNet  Google Scholar 

  16. Duan, K., Fong, S., Chen, C.L.P.: Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances. Nonlinear Dyn. 100(4), 3555–3573 (2020). https://doi.org/10.1007/s11071-020-05720-5

    Article  Google Scholar 

  17. Bande, M., Wehbe, B.: online model adaptation of autonomous underwater vehicles with LSTM Networks. In: OCEANS 2021: San Diego-Porto, pp. 1–6 (2021). https://doi.org/10.23919/OCEANS44145.2021.9705897

  18. Wang, D., Wan, J., Shen, Y., Qin, P., He, B.: Hyperparameter optimization for the LSTM method of AUV model identification based on Q-learning. J. Mar. Sci. Eng. 10, 1002 (2022). https://doi.org/10.3390/jmse10081002

    Article  Google Scholar 

  19. Xu, F., Zou, Z.-J., Yin, J.-C., Cao, J.: Identification modeling of underwater vehicles’ nonlinear dynamics based on support vector machines. Ocean Eng. 67, 68–76 (2013). https://doi.org/10.1016/j.oceaneng.2013.02.006

    Article  Google Scholar 

  20. Pei, T., Yu, C., Zhong, Y., Lian, L.: Adaptive event-triggered mechanism-based online system identification framework for marine craft. Ocean Eng. 278, 114572 (2023). https://doi.org/10.1016/j.oceaneng.2023.114572

    Article  Google Scholar 

  21. Ramirez, W.A., Kocijan, J., Leong, Z.Q., Nguyen, H.D., Jayasinghe, S.G.: Dynamic system identification of underwater vehicles using multi-output Gaussian processes. Int. J. Autom. Comput. 18, 681–693 (2021). https://doi.org/10.1007/s11633-021-1308-x

    Article  Google Scholar 

  22. Schuerch, M., Azzimonti, D., Benavoli, A., Zaffalon, M.: Correlated product of experts for sparse Gaussian process regression. Mach. Learn. 112(5), 1411–1432 (2023). https://doi.org/10.1007/s10994-022-06297-3

    Article  MathSciNet  Google Scholar 

  23. Yang, K., Lu, J., Wan, W., Zhang, G., Hou, L.: Transfer learning based on sparse gaussian process for regression. Inf. Sci. 605, 286–300 (2022). https://doi.org/10.1016/j.ins.2022.05.028

    Article  Google Scholar 

  24. Bender, M., Tian, L., Fan, X., Kurdila, A., Mueller, R.: Spatially recursive estimation and gaussian process dynamic models of bat flapping flight. Nonlinear Dyn. 95(1), 217–237 (2019). https://doi.org/10.1007/s11071-018-4560-z

    Article  Google Scholar 

  25. Renson, L., Sieber, J., Barton, D.A.W., Shaw, A.D., Neild, S.A.: Numerical continuation in nonlinear experiments using local Gaussian process regression. Nonlinear Dyn. 98(4, SI), 2811–2826 (2019). https://doi.org/10.1007/s11071-019-05118-y

    Article  Google Scholar 

  26. Zhang, Z., Ren, J.: Locally weighted non-parametric modeling of ship maneuvering motion based on sparse Gaussian process. J. Mar. Sci. Eng. (2021). https://doi.org/10.3390/jmse9060606

  27. Yoo, C., Heon Lee, J.J., Anstee, S., Fitch, R.: Path planning in uncertain ocean currents using ensemble forecasts. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8323–8329 (2021). https://doi.org/10.1109/ICRA48506.2021.9561626

  28. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, England (2011). https://doi.org/10.1002/9781119994138

    Book  Google Scholar 

  29. McMahan, H.B., Streeter, M.J.: Adaptive bound optimization for online convex optimization. In: Annual Conference Computational Learning Theory (2010). https://doi.org/10.48550/arXiv.1002.4908

  30. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. ArXiv (2019) https://doi.org/10.48550/arXiv.1904.09237

  31. Moulay, E., Léchappé, V., Plestan, F.: Properties of the sign gradient descent algorithms. Inf. Sci. 492, 29–39 (2019). https://doi.org/10.1016/j.ins.2019.04.012

    Article  MathSciNet  Google Scholar 

  32. Safaryan, M.H., Richtárik, P.: Stochastic sign descent methods: new algorithms and better theory. In: ICML (2021). https://doi.org/10.48550/arXiv.1905.12938

  33. Tong, Q., Liang, G., Bi, J.: Calibrating the adaptive learning rate to improve convergence of ADAM. Neurocomputing 481, 333–356 (2022). https://doi.org/10.1016/j.neucom.2022.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Martin, S.C., Whitcomb, L.L.: Experimental identification of six-degree-of-freedom coupled dynamic plant models for underwater robot vehicles. IEEE J. Ocean. Eng. 39(4), 662–671 (2014). https://doi.org/10.1109/JOE.2013.2280492

    Article  ADS  Google Scholar 

  35. Healey, A.J., Good, M.R.: The NPS AUV II autonomous underwater vehicle testbed: Design and experimental verification. Nav. Eng. J. 104(3), 191–202 (1992). https://doi.org/10.1111/j.1559-3584.1992.tb02238.x

    Article  Google Scholar 

  36. Zhang, Z., Ren, J., Bai, W.: MIMO non-parametric modeling of ship maneuvering motion for marine simulator using adaptive moment estimation locally weighted learning. Ocean Eng. 261, 112103 (2022). https://doi.org/10.1016/j.oceaneng.2022.112103

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the anonymous reviewers for their constructive suggestions which comprehensively improve the quality of the paper. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51779029, 61903092, 51939001) and Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0891).

Author information

Authors and Affiliations

Authors

Contributions

ZZ involved in conceptualization, methodology, software, simulation, visualization, writing original draft preparation. JR took part in conceptualization, writing review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Junsheng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

In order to make the following statement clearer, as mentioned in Theorem 1, here we will take one-dimensional space as an example to illustrate, i.e., \(\varvec{\vartheta }_{k,i} \rightarrow \vartheta _k, \varvec{m}_{k,i} \rightarrow m_k, \varvec{n}_{k,i} \rightarrow n_k\), etc. Based on the above formulation of ‘adaptive learning problem’ and Eq. (33), \({\vartheta }_{k+1}\) is constructed as follows

$$\begin{aligned} \begin{aligned} {\vartheta }_{k+1}&={\prod }_{\Omega , \sqrt{{n}_{k}}}{\vartheta }_{k} - \mathcal {Q} n_k^{-1 / 2} m_k \\&= \min _{{\vartheta } \in \Omega }\{n_k^{1 / 4}[{\vartheta }-({\vartheta }_k-\mathcal {Q} n_k^{-1 / 2} m_k)]\} \\ \end{aligned} \end{aligned}$$
(A1)

From Lemma 2, using \(u_1 = {\vartheta }_{k+1}\), \(u_2 = {\vartheta }_{*}\), \(x={\vartheta }\) and \(\mathcal {E} = n_k^{1/2}\), we have:

$$\begin{aligned} \begin{aligned}&[n_k^{1 / 4}({\vartheta }_{k+1}-{\vartheta }_*)]^2 \\&\quad \le [n_k^{1 / 4}({\vartheta }_k-\mathcal {Q} n_k^{-1 / 2} m_k-{\vartheta }_*)]^2 \\&\quad =[n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2+\mathcal {Q}^2 [n_k^{-1 / 4} m_k]^2 \\&\quad -2 \mathcal {Q}[m_k({\vartheta }_k-{\vartheta }_*)] \\&\quad =[n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2+\mathcal {Q}^2 [n_k^{-1 / 4} m_k]^2 \\&\quad -2 \mathcal {Q}[(\beta _{1} m_{k-1}+(1-\beta _{1}){\mathcal {A}}_k)({\vartheta }_k-{\vartheta }_*)] \end{aligned} \end{aligned}$$
(A2)

Since \({\mathcal {A}}_k\) is the k-th iteration element about \({\mathcal {A}}\), the term \([(\beta _{1} m_{k-1}+(1-\beta _{1}){\mathcal {A}}_k)({\vartheta }_k-{\vartheta }_*)]\) approximates to \([k{{g}}_k({\vartheta }_k-{\vartheta }_*)]\). Note that \(\beta _{1} \in [0,1)\) and \(\beta _{2} \in [0,1)\), and using Cauchy–Schwartz and Young’s inequality rearranging inequality Eq. (A2), we have:

$$\begin{aligned} \begin{aligned}&[{{g}}_k({\vartheta }_k-{\vartheta }_*)]\\&\quad \le \frac{1}{2 \mathcal {Q}(1-\beta _{1})}\left( [n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2-[n_k^{1 / 4}({\vartheta }_{k+1}-{\vartheta }_*)]^2\right) \\&\quad +\frac{\mathcal {Q}}{2(1-\beta _{1})}(n_k^{-1 / 4} m_k)^2-\frac{\beta _{1}}{1-\beta _{1}}[m_{k-1}({\vartheta }_k-{\vartheta }_*)] \\&\quad \le \frac{1}{2 \mathcal {Q}(1-\beta _{1})}\left( [n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2-[n_k^{1 / 4}({\vartheta }_{k+1}-{\vartheta }_*)]^2\right) \\&\quad +\frac{\mathcal {Q}}{2(1-\beta _{1})}(n_k^{-1 / 4} m_k)^2 \\&\quad +\frac{\beta _{1}}{2(1-\beta _{1})} \mathcal {Q}(n_k^{-1 / 4} m_{k-1})^2+\frac{\beta _{1}}{2 \mathcal {Q}(1-\beta _{1})}[n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2 \end{aligned} \end{aligned}$$
(A3)

where Cauchy–Schwartz and Young’s inequality is \(ab \le a^2\epsilon /2 + b^2 / 2\epsilon \), \(\forall \epsilon >0\).

According to the purpose in ‘Adaptive learning problem,’ by convexity of \(f(\bullet )\) and Eq. (A3), we have:

$$\begin{aligned}{} & {} {\sum }_{k=1}^\mathcal {K} f_k({\vartheta }_k)-f_k({\vartheta }_*) \nonumber \\{} & {} \quad \le {\sum }_{k=1}^\mathcal {K} [{g}_k({\vartheta }_k-{\vartheta }_*)]\nonumber \\{} & {} \quad \le {\sum }_{k=1}^\mathcal {K} \left\{ \frac{1}{2 \mathcal {Q}(1-\beta _{1})}\left( [n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2-[n_k^{1 / 4}({\vartheta }_{k+1}-{\vartheta }_*)]^2\right) \right. \nonumber \\{} & {} \quad +\frac{\mathcal {Q}}{2(1-\beta _{1})}(n_k^{-1 / 4} m_k)^2 \nonumber \\{} & {} \quad \left. +\frac{\beta _{1} \mathcal {Q}}{2(1-\beta _{1})}(n_k^{-1 / 4} m_{k-1})^2+\frac{\beta _{1}}{2 \mathcal {Q}(1-\beta _{1})}[n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)]^2 \right\} \nonumber \\ \end{aligned}$$
(A4)

Since \(\beta _{1} \in [0,1)\) and \(\beta _{2} \in [0,1)\), \(0 \le n_{k-1} \le n_{k}\),

$$\begin{aligned} \begin{aligned}&{\sum }_{k=1}^\mathcal {K} f_k({\vartheta }_k)-f_k({\vartheta }_*) \le {\sum }_{k=1}^\mathcal {K} \left[ {g}_k({\vartheta }_k-{\vartheta }_*)\right] \\&\le \frac{1}{2\mathcal {Q}\left( 1-\beta _1\right) }\left[ n_1^{1 / 4}\left( \vartheta _1-\vartheta _*\right) \right] ^2 \\&+ \frac{1}{2\left( 1-\beta _1\right) } {\sum }_{k=2}^\mathcal {K}\left( \vartheta _k-\vartheta _*\right) ^2 \left[ \frac{n_k^{1 / 2}-n_{k-1}^{1 / 2}}{\mathcal {Q}}\right] \\&+\frac{1+\beta _1}{2\left( 1-\beta _1\right) } {\sum }_{k=1}^\mathcal {K} \mathcal {Q}\left( n_k^{-1 / 4} m_k\right) ^2 \\&+\frac{\beta _{1}}{2\mathcal {Q}\left( 1-\beta _1\right) } {\sum }_{k=1}^\mathcal {K} \left[ n_k^{1 / 4}\left( \vartheta _k-\vartheta _*\right) \right] ^2 \end{aligned} \end{aligned}$$
(A5)

where for \({\sum }_{t=1}^T \mathcal {Q}(n_k^{-1 / 4} m_k)^2\) in Eq. (A5), assuming \(0< c < n_k\), \(\forall k \in [\mathcal {K}]\), according to the definition of \(m_k\) in Eq. (33), then

$$\begin{aligned} \begin{aligned}&{\sum }_{k=1}^\mathcal {K} \mathcal {Q}\left( n_k^{-1 / 4} m_k\right) ^2\\&\quad ={\sum }_{k=1}^{\mathcal {K}-1} \mathcal {Q}\left( n_k^{-1 / 4} m_k\right) ^2+\mathcal {Q}\left( n_\mathcal {K}^{-1 / 4} m_\mathcal {K}\right) ^2 \\&\quad \le {\sum }_{k=1}^{\mathcal {K}-1} \mathcal {Q}\left( s_k^{-1 / 4} m_k\right) ^2+\frac{\mathcal {Q}}{\sqrt{c\mathcal {K}}}m_\mathcal {K}^2\\&\quad \le {\sum }_{k=1}^{\mathcal {K}-1} \mathcal {Q}\left( n_k^{-1 / 4} m_k\right) ^2+\frac{\mathcal {Q}\beta _1}{\sqrt{c\mathcal {K}}\left( 1-\beta _1\right) }{\sum }_{k=1}^\mathcal {K} g_{k}^2 \\&\quad \le \frac{\mathcal {Q}\beta _1}{\sqrt{c}\left( 1-\beta _1\right) }{\sum }_{k=1}^\mathcal {K} g_{k}^2 \frac{1}{\sqrt{k}}\\ \end{aligned} \end{aligned}$$
(A6)

According to Cauchy–Schwartz inequality \(\langle x, y \rangle \le \Vert x\Vert \Vert y\Vert \), and \({\sum }_{k=1}^\mathcal {K}1/\sqrt{k} \le 1+\log \mathcal {K}\), then Eq. (A6) becomes

$$\begin{aligned} \begin{aligned}&{\sum }_{k=1}^\mathcal {K} \mathcal {Q}\left( n_k^{-1 / 4} m_k\right) ^2 \le \frac{\mathcal {Q} \sqrt{1+\log \mathcal {K}}}{\sqrt{c}\left( 1-\beta _1\right) ^2} \Vert \varvec{\mathcal {A}}^2\Vert _2 \\ \end{aligned} \end{aligned}$$
(A7)

Apply Eqs. (A7) to (A5), we have:

$$\begin{aligned} \begin{aligned}&{\sum }_{k=1}^\mathcal {K} f_k({\vartheta }_k)-f_k({\vartheta }_*) \le {\sum }_{k=1}^\mathcal {K} [ {g}_k({\vartheta }_k-{\vartheta }_*) ]\\&\le \frac{1}{2(1-\beta _1)} \frac{\left[ n_1^{1 / 4}({\vartheta }_1-{\vartheta }_*)\right] ^2}{\mathcal {Q}} \\&+\frac{1}{2(1-\beta _1)} {\sum }_{k=2}^\mathcal {K} ({\vartheta }_k-{\vartheta }_* )^2\left[ \frac{n_k^{1 / 2} - n_{k-1}^{1 / 2}}{\mathcal {Q}}\right] \\&+\frac{(1+\beta _1) \mathcal {Q} \sqrt{1+\log \mathcal {K}}}{2 \sqrt{c}(1-\beta _1)^3} \Vert \varvec{\mathcal {A}}^2\Vert _2 \\&+ \frac{\beta _1}{2\mathcal {Q}(1-\beta _1)} {\sum }_{k=1}^\mathcal {K} \left[ n_k^{1 / 4}({\vartheta }_k-{\vartheta }_*)\right] ^2 \\&\le \frac{\mathcal {G}_{\infty }^2 \sqrt{\mathcal {K}}}{2 \mathcal {Q} (1-\beta _1)} n_{\mathcal {K}}^{1 / 2}+\frac{(1+\beta _1) \mathcal {Q} \sqrt{1+\log \mathcal {K}}}{2 \sqrt{c}(1-\beta _1)^3} \Vert \varvec{\mathcal {A}}^2\Vert _2 \\&+\frac{\beta _1 \mathcal {G}_{\infty }^2}{2 \mathcal {Q}(1-\beta _1)} {\sum }_{k=1}^\mathcal {K}n_{k}^{1 / 2}\\ \end{aligned} \end{aligned}$$
(A8)

It can be seen from Eq. (A8) that \(f_k({\vartheta }_k)-f_k({\vartheta }_*)\) is converged, which means \(\lim _{k \rightarrow \infty } \left[ f_k({\vartheta }_k)-f_k({\vartheta }_*)\right] ^2=0\) can be obtained. For the assumed convex case, Theorem 1 means that the convergence time complexity of AME is \(O(\sqrt{\mathcal {K}})\). \(\square \)

Appendix B

To supplement the details of the process in Fig. 2, the pseudocode of our proposed LAGPL algorithm is presented here as shown in Algorithm 1, which includes the training and prediction stages.

Algorithm 1
figure a

Pseudocode for local adaptive moment estimation Gaussian processes learning

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ren, J. Nonparametric dynamics modeling for underwater vehicles using local adaptive moment estimation Gaussian processes learning. Nonlinear Dyn 112, 5477–5502 (2024). https://doi.org/10.1007/s11071-024-09314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09314-3

Keywords

Navigation