Skip to main content

Learning Based Trajectory Tracking Control of Autonomous Underwater Vehicles with Actuator Nonlinearity

  • Conference paper
  • First Online:
Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) (ICAUS 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 861))

Included in the following conference series:

  • 116 Accesses

Abstract

This paper presents a novel Gaussian process (GP) based adaptive tracking control method for autonomous underwater vehicles subject to unknown system dynamics and uncertain smooth actuator nonlinearity. We deploy sparse online Gaussian process (SOGP) technique to estimate the unknown system dynamics and uncertain actuator nonlinearity simultaneously, with a given prior dynamic model. Based on an adaptive sliding mode control framework, the posterior means of GPs are used to compensate for all the unknown terms. Besides, the corresponding posterior variances, which indicate the probabilistic confidence intervals, are applied to update robust control gains. Theoretical analysis is performed to prove the stability of a closed-loop system with our proposed control law. Comparison simulation results validate the effectiveness of our GP-based adaptive tracking control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 699.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreras, M., Hernández, J.D., Vidal, E., Palomeras, N., Ribas, D., Ridao, P.: Sparus II AUV-a hovering vehicle for seabed inspection. IEEE J. Ocean. Eng. 43(2), 344–355 (2018)

    Article  Google Scholar 

  2. Barker, L.D., et al.: Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice. Remote Sens. 12(16), 2588 (2020)

    Article  Google Scholar 

  3. Kato, N., et al.: An autonomous underwater robot for tracking and monitoring of subsea plumes after oil spills and gas leaks from seafloor. J. Loss Prevent. Process Indust. 50, 386–396 (2017)

    Article  Google Scholar 

  4. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Indust. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  5. Guerrero, J., Torres, J., Creuze, V., Chemori, A.: Observation-based nonlinear proportional–derivative control for robust trajectory tracking for autonomous underwater vehicles. IEEE J. Ocean. Eng. (2019)

    Google Scholar 

  6. Heshmati Alamdari, S., Karras, G.C., Marantos, P., Kyriakopoulos, K.J.: A robust predictive control approach for underwater robotic vehicles. IEEE Trans. Contr. Syst. Technol. (2019)

    Google Scholar 

  7. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  8. Yin, S., Xiao, B.: Tracking control of surface ships with disturbance and uncertainties rejection capability. IEEE/ASME Trans. Mechatron. 22(3), 1154–1162 (2016)

    Article  Google Scholar 

  9. Guerrero, J., Antonio, E., Manzanilla, A., Torres, J., Lozano, R.: Autonomous underwater vehicle robust path tracking: auto-adjustable gain high order sliding mode controller. IFAC-Papers OnLine 51(13), 161–166 (2018)

    Article  Google Scholar 

  10. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Terminal sliding mode control for the trajectory tracking of underactuated autonomous vehicles. Ocean Eng. 129, 613–625 (2017)

    Article  Google Scholar 

  11. Minowa, A., Toda, M.: A high-gain observer-based approach to robust motion control of towed underwater vehicles. IEEE J. Ocean. Eng. 44(4), 997–1010 (2018)

    Article  Google Scholar 

  12. Zhang, Z., Leibold, M., Wollherr, D.: Integral sliding-mode observer-based disturbance estimation for Euler-Lagrangian systems. IEEE Trans. Contr. Syst. Technol. 28(6), 2377–2389 (2019)

    Article  Google Scholar 

  13. Luo, W., Soares, C.G., Zou, Z.: Neural-network-and \(\cal{L}_2\)-gain-based cascaded control of underwater robot thrust. IEEE J. Ocean. Eng. 39(4), 630–640 (2013)

    Article  Google Scholar 

  14. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2, no. 3. The MIT Press, New York (2006)

    Google Scholar 

  15. Beckers, T., Kulić, D., Hirche, S.: Stable Gaussian process based tracking control of Euler-Lagrange systems. Automatica 103, 390–397 (2019)

    Article  MathSciNet  Google Scholar 

  16. Chowdhary, G., Kingravi, H.A., How, J.P., Vela, P.A.: Bayesian nonparametric adaptive control using Gaussian processes. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 537–550 (2014)

    Article  MathSciNet  Google Scholar 

  17. He, W., Yin, Z., Sun, C.: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function. IEEE Trans. Cybern. 47(7), 1641–1651 (2016)

    Article  Google Scholar 

  18. Lederer, A., Umlauft, J., Hirche, S.: Uniform error bounds for gaussian process regression with application to safe control. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/fe73f687e5bc5280214e0486b273a5f9-Paper.pdf

  19. Fiedler, C., Scherer, C.W., Trimpe, S.: Practical and rigorous uncertainty bounds for gaussian process regression. Proc. AAAI Conf. Artif. Intell. 35(8), 7439–7447 (2021)

    Google Scholar 

  20. Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Contr. 59(5), 1336–1341 (2013)

    Article  MathSciNet  Google Scholar 

  21. Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans. Indust. Electron. 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  22. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  23. Gao, W., Selmic, R.R.: Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans. Neural Netw. 17(1), 147–156 (2006)

    Article  Google Scholar 

  24. Csató, L., Opper, M.: Sparse on-line gaussian processes. Neural Comput. 14(3), 641–668 (2002)

    Article  Google Scholar 

  25. Umlauft, J., Pöhler, L., Hirche, S.: An uncertainty-based control Lyapunov approach for control-affine systems modeled by Gaussian process. IEEE Contr. Syst. Lett. (2018)

    Google Scholar 

  26. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  27. Chowdhury, S.R., Gopalan, A.: On kernelized multi-armed bandits. In: International Conference on Machine Learning, pp. 844–853. PMLR (2017)

    Google Scholar 

  28. Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice Hall Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  29. Tsakalis, K.S.: The sigma-modification in the adaptive control of linear time-varying plants. In: [1992] Proceedings of the 31st IEEE Conference on Decision and Control, pp. 694–698. IEEE (1992)

    Google Scholar 

  30. He, Y., Zhao, Y., Geng, X.: Gaussian process based robust trajectory tracking of autonomous underwater vehicle. To be published (2021)

    Google Scholar 

  31. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Indust. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  32. Qiao, L., Yi, B., Wu, D., Zhang, W.: Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles. Ocean Eng. 134, 157–172 (2017)

    Article  Google Scholar 

  33. Eidsvik, O.A.: Identification of hydrodynamic parameters for remotely operated vehicles. Master’s thesis, NTNU (2015)

    Google Scholar 

Download references

Acknowledgement

This research was funded by National CMOST Key Research & Development projects (Nos. 2017YFC1404100, 2017YFC1404103 and 2017YFC1404104), the NSFC (No. 41676088) and the Fundamental Research Funds for the Central Universities(No. 3072021CFJ0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxu He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Zhao, Y., Deng, X., Xu, G. (2022). Learning Based Trajectory Tracking Control of Autonomous Underwater Vehicles with Actuator Nonlinearity. In: Wu, M., Niu, Y., Gu, M., Cheng, J. (eds) Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021). ICAUS 2021. Lecture Notes in Electrical Engineering, vol 861. Springer, Singapore. https://doi.org/10.1007/978-981-16-9492-9_100

Download citation

Publish with us

Policies and ethics