Skip to main content
Log in

Analysis of discontinuous dynamical behaviors for a 3-DOF friction collision system with dynamic vibration absorber

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the discontinuous dynamic behavior of a 3-DOF (three-degree-of-freedom) friction collision system with dynamic vibration absorber is studied by the flow transformation theory. This paper aims to explore the conversion of movement in the friction collision system with discontinuous and non-smooth properties. The global dynamics of the 3-DOF system are reflected by separately studying the movement of each target. The different motion states and equations are defined by the force of each target and the mode of model connection. The flow barriers at the boundary/edge are defined by the characteristics of the friction model. The domains are divided in the two-dimensional phase space of each object, and the continuous vector field and G-function are defined in each domain. Based on this, the motion switching criteria at the separation boundary/edge are researched. Finally, some classical motion states and periodic phenomena are drawn by MATLAB software to simulate the global movement of the system. The study of the 3-DOF model enriches the theoretical basis for the mechanical devices with dynamic vibration absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Dowell, E.H., Schwartz, H.B.: Forced response of a cantilever beam with a dry friction damper attached, part I: theory. J. Sound Vib. 91(2), 255–267 (1983)

    ADS  Google Scholar 

  2. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Trans. ASME 107(1), 100–103 (1985)

    Google Scholar 

  3. Shaw, S.W.: On the dynamic response of a system with dry friction. J. Sound Vib. 108(2), 305–325 (1986)

    ADS  MathSciNet  Google Scholar 

  4. Feeny, B., Moon, F.C.: Chaos in a forced dry-friction oscillator: experiments and numerical modelling. J. Sound Vib. 170(3), 303–323 (1994)

    ADS  Google Scholar 

  5. Leine, R.I., Campen, D., Kraker, A.D., Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Google Scholar 

  6. Velex, P., Cahouet, V.: Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics. J. Mech. Des. 122, 515–522 (2000)

    Google Scholar 

  7. Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. Trans. ASME 126(1), 34–40 (2004)

    Google Scholar 

  8. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    ADS  CAS  PubMed  Google Scholar 

  9. Luo, A., Gegg, B.C.: Periodic motions in a periodically forced oscillator moving on the oscillating belt with dry friction. ASME 66, 925–937 (2005)

    Google Scholar 

  10. ÖZel, T.: The influence of friction models on finite element simulations of machining. Int. J. Mach. Tool. Manuf. 46(5), 518–530 (2006)

  11. Andersson, S., Söerberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40(4), 580–587 (2007)

    CAS  Google Scholar 

  12. Graf, M., Ostermeyer, G.P.: Friction-induced vibration and dynamic friction laws: instability at positive friction-velocity-characteristic. Tribol. Int. 92, 255–258 (2015)

    Google Scholar 

  13. Zhang, Y., Fu, X.: Flow switchability of motions in a horizontal impact pair with dry friction. Commun. Nonlinear Sci. 44, 89–107 (2017)

    MathSciNet  Google Scholar 

  14. Niknam, A., Farhang, K.: Friction-induced vibration in a two-mass damped system. J. Sound Vib. 456, 454–475 (2019)

    ADS  Google Scholar 

  15. Zhang, Z., Duan, N., Lin, C., Hua, H.: Coupled dynamic analysis of a heavily-loaded propulsion shafting system with continuous bearing-shaft friction. Int. J. Mech. Sci. 172, 105431 (2020)

    Google Scholar 

  16. Yeh, G.: Forced vibrations of a two-degree-of-freedom system with combined coulomb and viscous damping. J. Acoust. Soc. Am. 39(1), 14–24 (1964)

    ADS  Google Scholar 

  17. Brockley, C.A., Cameron, R., Potter, A.F.: Friction-induced vibration. J. Lubr. Technol. 89(2), 101–107 (1967)

    Google Scholar 

  18. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

    ADS  MathSciNet  Google Scholar 

  19. Khulief, Y.A., Shabana, A.A.: Impact responses of multi-body systems with consistent and lumped masses. J. Sound Vib. 104(2), 187–207 (1986)

    ADS  Google Scholar 

  20. Shaw, J., Shaw, S.W., Haddow, A.G.: On the response of the non-linear vibration absorbe. Int. J. Non-Linear Mech. 24(4), 281–293 (1989)

    ADS  Google Scholar 

  21. Tanaka, N., Kikushima, Y.: Impact vibration control using a semi-active damper. J. Sound Vib. 158(2), 277–292 (1992)

    ADS  Google Scholar 

  22. Luo, G., Zhang, Y.: Analyses of impact motions of harmonically excited systems having rigid amplitude constraints. Int. J. Impact Eng. 34(11), 1883–1905 (2007)

    Google Scholar 

  23. Flores, P., Koshy, C., Lankarani, H., Ambrsio, J., Claro, J.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Google Scholar 

  24. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69, 2117–2133 (2012)

    MathSciNet  Google Scholar 

  25. Langley, R.S.: The analysis of impact forces in randomly vibrating elastic systems. J. Sound Vib. 331(16), 3738–3750 (2012)

    ADS  Google Scholar 

  26. Fu, X., Zhang, Y.: Stick motions and grazing flows in an inclined impact oscillator. Chaos Solitons Fract. 76, 218–230 (2015)

    ADS  MathSciNet  Google Scholar 

  27. Luo, G.W., Shi, Y.Q., Zhu, X.F., Du, S.S.: Hunting patterns and bifurcation characteristics of a three-axle locomotive bogie system in the presence of the flange contact nonlinearity. Int. J. Mech. Sci. 136, 321–338 (2017)

    Google Scholar 

  28. Tao, H., Gibert, J.: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals. Nonlinear Dyn. 95(4), 66 (2019)

    Google Scholar 

  29. Gu, X., Deng, Z., Hu, R.: Optimal bounded control of stochastically excited strongly nonlinear vibro-impact system. J. Vib. Control. 66, 1–10 (2020)

    Google Scholar 

  30. Xia, Y., Pang, J., Yang, L., Chu, Z.: Investigation on clearance-induced vibro-impacts of torsional system based on Hertz contact nonlinearity. Mech. Mach. Theory. 162(2), 104342 (2021)

    Google Scholar 

  31. Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition–deletion—I theory. Mech. Mach. Theory. 21(5), 401–406 (1986)

    Google Scholar 

  32. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7(4), 471–497 (1995)

    MathSciNet  Google Scholar 

  33. Blazejczyk-Okolewska, B., Kapitaniak, T.: Dynamics of impact oscillator with dry friction. Chaos Solitons Fract. 7(9), 1455–1459 (1996)

    ADS  Google Scholar 

  34. Begley, C.J., Virgin, L.N.: Impact response and the influence of friction. J. Sound Vib. 211(5), 801–818 (1998)

    ADS  Google Scholar 

  35. Vrande, B., Campen, D., Kraker, A.D.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 157–169 (1999)

    Google Scholar 

  36. Sinou, J.J., Coudeyras, N., Nacivet, S.: Study of the nonlinear stationary dynamic of single and multi-instabilities for disk brake squeal. Int. J. Veh. Des. 51, 207–222 (2009)

    Google Scholar 

  37. Kurzeck, B.: Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation. Wear 271(1), 299–310 (2011)

    CAS  Google Scholar 

  38. Ataei, M., Atai, A.A., Mirjavadi, S., Sahebnasagh, M., Nikkhah-Bahrami, M.: Application of impulse damper in control of a chaotic friction-induced vibration. J. Mech. Sci. Technol. 25(2), 279–285 (2011)

    Google Scholar 

  39. Zhang, Z., Chen, F., Zhang, Z., Hua, H.: Analysis of friction-induced vibration in a propeller-shaft system with consideration of bearing-shaft friction. Proc. I Mech. E Part C J. Mech. Eng. Sci. 228(8), 1311–1328 (2013)

  40. Behzad, M., Alvandi, M., Mba, D., Jamali, J.: A finite element-based algorithm for rubbing induced vibration prediction in rotors. J. Sound Vib. 332(21), 5523–5542 (2013)

    ADS  Google Scholar 

  41. Kruse, S., Hoffmann, N.P.: On the robustness of instabilities in friction-induced vibration. J. Vib Acoust. 135(6), 061013.1–061013.8 (2013)

  42. Gendelman, O., Kravetc, P., Rachinskii, D.: Mixed global dynamics of forced vibro-impact oscillator with Coulomb friction. Chaos 29, 113116 (2019)

    ADS  MathSciNet  PubMed  Google Scholar 

  43. Wang, X.C., Huang, B., Wang, R.L., Mo, J.L., Ouyang, H.: Friction-induced stick-slip vibration and its experimental validation. Mech. Syst. Signal Process. 142, 106705 (2020)

    Google Scholar 

  44. Luo, A., Gegg, B.C.: Grazing phenomena in a periodically forced, friction-induced, linear oscillator. Commun. Nonlinear Sci. 11(7), 777–802 (2006)

    MathSciNet  Google Scholar 

  45. Luo, A., Gegg, B.C.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)

    ADS  MathSciNet  Google Scholar 

  46. Luo, A.: On flow switching bifurcations in discontinuous dynamical systems. Commun. Nonlinear Sci. 12(1), 100–116 (2007)

    MathSciNet  Google Scholar 

  47. Luo, A.: Discontinuous Dynamical Systems. Beijing Higher Education Press (2012)

  48. Luo, A., Faraji Mosadman, M.S.: Singularity, switchability and brfurcations in a 2-DOF, periodically forced, frictional oscillator. Int. J. Bifurc. Chaos 23(3), 1330009 (2013)

  49. Luo, A., Guo, Y.: Discontinuous Dynamical Systems, Vibro-impact Dynamics, pp. 85–129. Wiley, New York (2013)

    Google Scholar 

  50. Li, L., Luo, A.: On periodic solutions of a second-order, time-delayed, discontinuous dynamical system. Chaos Solitons Fract. 114, 216–229 (2018)

    ADS  MathSciNet  Google Scholar 

  51. Huang, J., Fu, X.: Complexity of dynamic system switching between two subsystems with cornered boundaries. Eur. Phys. J. Spec. Top. 228, 1385–1403 (2019)

    ADS  Google Scholar 

  52. Cao, J., Fan, J.: Discontinuous dynamical behaviors in a 2-DOF friction collision system with asymmetric damping. Chaos Solitons Fract. 142, 110405 (2021)

  53. Gao, M., Fan, J., Li, C.: Analysis of discontinuous dynamics of a 2-DOF system with constrained spring cushions. Int. J. Nonlinear Mech. 128, 103631 (2021)

    ADS  Google Scholar 

  54. Peng, Y., Fan, J., Gao, M., Li, J.: Discontinuous dynamics of an asymmetric 2-DOF friction oscillator with elastic and rigid impacts. Chaos Solitons Fract. 150, 111195 (2021)

  55. Li, J., Fan, J.: Nonlinear dynamics for a class of 2-DOF systems with viscoelastic limit devices on a curved track. Nonlinear Dyn. 108, 3123–3156 (2022)

    Google Scholar 

  56. Cheng, X., Fan, J., Li, J.: Discontinuous dynamics of a 2-DOF friction oscillator with rigid and elastic composite constraints. J. Vib. Eng. Technol. 6, 66 (2023)

    ADS  Google Scholar 

  57. Fu, X., Huang, J., Jing, Z.: Complex switching dynamics and chatter alarm for aerial agents with artificial potential field method. Appl. Math. Model. 107, 637–649 (2022)

    MathSciNet  Google Scholar 

  58. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Berlin (1996)

    Google Scholar 

  59. Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE. Trans. Autom. Contr. 48(6), 918–935 (2003)

    MathSciNet  Google Scholar 

  60. Bonetti, E., Frémond, M.: Analytical results on a model for damaging in domains and interfaces. ESAIM COCV 17, 955–974 (2011)

  61. Rice, H.J., Mccraith, J.R.: Practical non-linear vibration absorber design. J. Sound Vib. 116(3), 545–559 (1987)

    ADS  Google Scholar 

  62. Hu, H.Y.: Detection of grazing orbits and incident bifurcations of a forced continuous, piecewise-linear oscillator. J. Sound Vib. 187(3), 485–493 (1995)

    ADS  MathSciNet  Google Scholar 

  63. Agnes, G.S., Inman, D.J.: Performance of nonlinear vibration absorbers for multi-degrees-of-freedom systems using nonlinear normal modes. Nonlinear Dyn. 25, 275–292 (2001)

    Google Scholar 

  64. Mikhyeyev, O., Mori, H., Nagamine, T., Mori, M., Sato, Y.: Suppression of friction-induced vibration of glass plate by a dynamic absorber. J. Syst. Des. Dyn. 3(3), 380–390 (2009)

    Google Scholar 

  65. Gegg, B.C., Suh, S., Luo, A.: Modeling and theory of intermittent motions in a machine tool with a friction boundary. J. Manuf. Sci. E 132(4), 575–590 (2010)

    Google Scholar 

  66. Fu, X., Zheng, S.: New approach in dynamics of regenerative chatter research of turning. Commun. Nonlinear Sci. 19(11), 4013–4023 (2014)

    MathSciNet  Google Scholar 

  67. Liu, M., Gu, F., Huang, J., Wang, C., Cao, M.: Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor. Energies 10(12), 2069 (2017)

    Google Scholar 

  68. Sun, G., Fu, X.: Discontinuous dynamics of a class of oscillators with strongly nonlinear asymmetric damping under a periodic excitation. Commun. Nonlinear Sci. Numer. Simul. 61, 230–247 (2018)

    ADS  MathSciNet  Google Scholar 

  69. Wang, Q., Li, R., Zhu, Y., Du, X., Liu, Z.: Integration design and parameter optimization for a novel in-wheel motor with dynamic vibration absorbers. J. Braz. Soc. Mech. Sci. 42(9), 459 (2020)

    Google Scholar 

  70. Huang, J., Fu, X., Jing, Z.: Singular dynamics for morphing aircraft switching on the velocity boundary. Commun. Nonlinear Sci. Numer. Simul. 95, 105625 (2021)

    MathSciNet  Google Scholar 

  71. Asami, T., Yamada, K., Kawaguchi, N.: A quasi-optimal design formula of a parallel-type double-mass dynamic vibration absorber based on the stability criterion. Mech. Eng. 8(3), 66 (2021)

    Google Scholar 

  72. Tian, M., Gao, B.: Dynamics analysis of a novel in-wheel powertrain system combined with dynamic vibration absorber. Mech. Mach. Theory. 156, 104148 (2021)

  73. Sun, Y., Zhou, J., Gong, D., Ji, Y.: Study on multi-degree-of-freedom dynamic vibration absorber of the carbody of high-speed trains. Res. Square 6, 66 (2021)

    Google Scholar 

  74. Kumbhar, M.B., Desavale, R.G., Kumbhar, S.G.: Dynamic characterization of MR fluid-based dynamic vibration absorber. Arab. J. Sci. Eng. 6, 66 (2022)

    Google Scholar 

  75. Hrovat, D.: Influence of unsprung weight on vehicle ride quality. J. Sound. Vib. 124(3), 497–516 (1988)

    ADS  Google Scholar 

  76. Nagaya, G., Wakao, Y., Abe, A.: Development of an in-wheel drive with advanced dynamic-dampermechanism. JSAE Rev. 24, 477–481 (2003)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Shandong Provincial Natural Science Foundation, China (No. ZR2019MA048) and the National Natural Science Foundation of China (No. 11971275).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The specific division of the phase space of the three objects is as follows.

Firstly, the movement phase space partition of the object \(m _{a }\) in the absolute coordinates with its zero velocity as the boundary is expressed as

$$\begin{aligned} \left\{ \begin{array}{lll} D _{1}^{(a )}=\bigl \{(u _{a },\dot{u }_{a })\; |\;\dot{u }_{a }\in (0,+\infty ),\;u _{a }\in (-\infty , +\infty )\},\\ D _2^{(a )}=\bigl \{(u _{a },\dot{u }_{a })\; |\;\dot{u }_{a }\in (-\infty ,0),\;u _{a }\in (-\infty , +\infty )\},\\ \end{array}\right. \end{aligned}$$
(58)

and the horizontal axis as the boundary of the two domains is interpreted as

$$\begin{aligned} \left. \begin{array}{lll} \partial D _{12}^{(a )}=\partial D _{21}^{(a )}=\bigl \{(u _{a },\dot{u }_{a })\;|\;\rho _{12}^{(a )}=\rho _{21}^{(a )}\equiv \dot{u }_{a }=0,\; \\ \quad u _{a }\in (-\infty , +\infty )\bigr \}.\\ \end{array}\right. \end{aligned}$$
(59)

The specific classification is shown in Fig. 13. The gray area \(D _{1}^{(a )}\) and the pink area \(D _{2}^{(a )}\) represent the areas of free motion where the object \(m _{a }\)’s velocity is positive and negative, respectively. The two areas are separated by a velocity boundary \(\partial D _{12}^{(a )}\) represented on a horizontal axis, which is depicted by a black dotted curve.

Secondly, the divisions of domains/boundaries/edges about the two objects \(m _{b }\) and \(m _{c }\) in the absolute coordinates are more complex than that of the object \(m _{a }\). For the two masses \(m _{b }\) and \(m _{c }\), the partial divisions are described in detail as

$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} D _{1}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\; |\;\dot{u }_{b }\in (0,+\infty ),\\ \qquad \qquad \;u _{b }\in (-\infty , u _{c }+L _{0})\},\\ D _{2}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\; |\;\dot{u }_{b }\in (-\infty ,0),\\ \qquad \qquad \;u _{b }\in (-\infty , u _{c }+L _{0})\},\\ D _{3}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })|\;\dot{u }_{b }\in (0,+\infty ),\\ \qquad \qquad \;u _{b }\in (u _{c }^{(cr) }+L _{0},+\infty ),\;u _{b }=u _{c }+L _{0}\},\\ D _{4}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\; |\;\dot{u }_{b }\in (-\infty ,0),\\ \qquad \qquad \;u _{b }\in ( u _{c }^{(cr) }+L _{0}, +\infty ),\\ \qquad \qquad \;u _{b }=u _{c }+L _{0}\},\\ \end{array}\right. \end{aligned}$$
(60)
$$\begin{aligned}{} & {} \quad \left\{ \begin{array}{lll} \partial D _{12}^{(b )}=\partial D _{21}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\;|\;\rho _{12}^{(b )}\\ \qquad =\rho _{21}^{(b )}\equiv \dot{u }_{b }=0,\;u _{b }\in (-\infty , u _{c }+L _{0})\bigr \},\\ \partial D _{34}^{(b )}=\partial D _{43}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\;|\;\rho _{34}^{(b )}\\ \qquad =\rho _{43}^{(b )}\equiv \dot{u }_{b }=0,\;u _{b }= u _{c }+L _{0}\bigr \},\\ \partial D _{13}^{(b )}=\partial D _{31}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\;|\;\rho _{13}^{(b )}\\ \qquad =\rho _{31}^{(b )}\equiv \dot{u }_{b }-\dot{u }_{c }^{(cr)}=0,\\ \qquad \;u _{b }= u _{c }^{(cr)}+L _{0},\;\dot{u }_{b }\in (0,+\infty )\bigr \},\\ \partial D _{24}^{(b )}=\partial D _{24}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\;|\; \rho _{24}^{(b )}\\ \qquad \, =\rho _{42}^{(b )}\equiv \dot{u }_{b }-\dot{u }_{c }^{(cr)}=0,\\ \qquad u _{b }= u _{c }^{(cr)}+L _{0},\;\dot{u }_{b }\in (-\infty ,0)\bigr \},\\ \end{array}\right. \end{aligned}$$
(61)
$$\begin{aligned}{} & {} \quad \left. \begin{array}{lll} \angle D _{5}^{(b )}=\partial D _{12}^{(b )}\cap \partial D _{13}^{(b )}=\partial D _{12}^{(b )}\cap \partial D _{24}^{(b )}\\ \quad =\partial D _{34}^{(b )}\cap \partial D _{13}^{(b )}=\partial D _{34}^{(b )}\cap \partial D _{24}^{(b )}=\bigl \{(u _{b },\dot{u }_{b })\;|\\ \quad \;\rho _{12}^{(b )}=\rho _{34}^{(b )}\equiv \dot{u }_{b }=0,\;\rho _{13}^{(b )}=\rho _{24}^{(b )}\\ \quad \equiv \dot{u }_{b }-\dot{u }_{c }^{(cr)}=0,\\ \quad \;u _{b }= u _{c }^{(cr)}+L _{0}\bigr \},\\ \end{array}\right. \end{aligned}$$
(62)
Fig. 13
figure 13

Absolute domains and boundaries divisions of object \(m _{a }\)

and

$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} D _{1}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\; |\; \\ \quad \dot{u }_{c }\in (0,+\infty ),\;u _{c }\in (u _{b }-L _{0}, +\infty )\},\\ D _{2}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\; |\; \\ \qquad \dot{u }_{c }\in (-\infty ,0),\;u _{c }\in (u _{b }-L _{0}, +\infty )\},\\ D _{3}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\; |\;\dot{u }_{c }\in (0,+\infty ),\; \\ \qquad u _{c }\in (-\infty , u _{b }^{(cr) }-L _{0})\},\\ \qquad \;u _{c }=u _{b }-L _{0}\},\\ D _{4}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\; |\;\dot{u }_{c }\in (-\infty ,0),\\ \qquad \;u _{b }\in (-\infty , u _{b }^{(cr) }-L _{0})\},\\ \qquad \;u _{c }=u _{b }-L _{0}\},\\ \end{array}\right. \end{aligned}$$
(63)
$$\begin{aligned}{} & {} \quad \left\{ \begin{array}{lll} \partial D _{12}^{(c )}=\partial D _{21}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\;|\;\rho _{12}^{(c )}\\ \qquad =\rho _{21}^{(c )}\equiv \dot{u }_{c }=0,\;u _{c }\in (u _{b }-L _{0}, +\infty )\bigr \},\\ \partial D _{34}^{(c )}=\partial D _{43}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\;|\;\rho _{34}^{(c )}\\ \qquad =\rho _{43}^{(c )}\equiv \dot{u }_{c }=0,\;u _{c }= u _{b }-L _{0}\bigr \},\\ \partial D _{13}^{(c )}=\partial D _{31}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\;|\;\rho _{13}^{(c )}\\ \qquad =\rho _{31}^{(c )}\equiv \dot{u }_{c }-\dot{u }_{b }^{(cr)}=0,\;u _{c }= u _{b }^{(cr)}\\ \qquad -L _{0},\;\dot{u }_{c }\in (0,+\infty )\bigr \},\\ \partial D _{24}^{(c )}=\partial D _{24}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\;|\;\rho _{24}^{(c )}\\ \qquad =\rho _{42}^{(c )}\equiv \dot{u }_{c }-\dot{u }_{b }^{(cr)}=0,\;u _{c }= u _{b }^{(cr)}\\ \qquad -L _{0},\;\dot{u }_{c }\in (-\infty ,0)\bigr \},\\ \end{array}\right. \end{aligned}$$
(64)
$$\begin{aligned}{} & {} \quad \left. \begin{array}{lll} \angle D _{5}^{(c )}=\partial D _{12}^{(c )}\cap \partial D _{13}^{(c )}=\partial D _{12}^{(c )}\\ \quad \cap \partial D _{24}^{(c )}=\partial D _{34}^{(c )}\cap \partial D _{13}^{(c )}=\partial D _{34}^{(c )}\\ \quad \cap \partial D _{24}^{(c )}=\bigl \{(u _{c },\dot{u }_{c })\;| \rho _{12}^{(c )}=\rho _{34}^{(c )}\\ \quad \equiv \dot{u }_{c }=0,\;\rho _{13}^{(c )}=\rho _{24}^{(c )}\equiv \dot{u }_{c }-\dot{u }_{b }^{(cr)}=0,\\ \quad \;u _{c }= u _{b }^{(cr)}-L _{0}\bigr \},\\ \end{array}\right. \end{aligned}$$
(65)

where \(\dot{u }_{i }^{(cr)}\) and \(u _{i }^{(cr)}\) \((i \in \{b , c \})\) are interpreted as the corresponding velocity and displacement of the object \(m _{i }\) at the time when stick motion occurs or disappears.

Fig. 14
figure 14

Absolute domains and boundaries divisions: a object \(m _{b }\) and b object \(m _{c }.\)

The phase space partitions of two masses \(m _{b }\) and \(m _{c }\) are shown in Fig. 14 under the precondition that collision is not considered. The non-stick free motion domains (\(D _{1}^{(i )}\), \(D _{2}^{(i )}\), \(i \in \{b , c \}\)) with positive and negative velocity values are also filled in gray and pink, respectively. The stick free motion domains (\(D _{3}^{(i )}\), \(D _{4}^{(i )}\), \(i \in \{b , c \}\)) are filled in blue and purple, respectively. The velocity boundaries without stick state (\(\partial D _{12}^{(b )}\), \(\partial D _{12}^{(c )}\)) and the velocity boundaries with stick state (\(\partial D _{34}^{(b )}\), \(\partial D _{34}^{(c )}\)) are depicted by black and green dotted curves, and the stick displacement boundaries (\(\partial D _{13}^{(b )}\), \(\partial D _{24}^{(b )}\), \(\partial D _{13}^{(c )}\) \(\partial D _{24}^{(c )}\)) are depicted by yellow dashed curves. The edges (\(\angle D _{5}^{(b )}\), \(\angle D _{5}^{(c )}\)) are marked with solid red dots.

Considering the collision of two objects \(m _{b }\) and \(m _{c }\) requires comparing the relative velocities and displacements of this two objects, so the following definitions are listed as

$$\begin{aligned} \left\{ \begin{array}{lll} z _{b }=u _{b }-u _{c },\; \dot{z }_{b }=\dot{u }_{b }-\dot{u }_{c },\; \ddot{z }_{b }=\ddot{u }_{b }-\ddot{u }_{c },\\ z _{c }=u _{c }-u _{a },\; \dot{z }_{c }=\dot{u }_{c }-\dot{u }_{a },\; \ddot{z }_{c }=\ddot{u }_{c }-\ddot{u }_{a }.\\ \end{array}\right. \end{aligned}$$
(66)

In order to facilitate the research of stick motion and collision motion, the relative coordinates of the object \(m _{b }\) are established for phase space division. The specific analysis is expressed as:

$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} D _{1}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\; |\; \\ \quad \dot{z }_{b }\in (-\dot{z }_{c },+\infty ),\;z _{b }\in (-\infty , u _{c }+L _{0})\},\\ D _{2}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })|\; \\ \quad \dot{z }_{b }\in (-\infty , -\dot{z }_{c }),\;z _{b }\in (-\infty , u _{c }+L _{0})\},\\ D _{3}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\; | \\ \quad \;\dot{z }_{b }\in (-\dot{z }_{c },+\infty ),\;z _{b }=L _{0}\},\\ D _{4}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\; |\\ \quad \;\dot{z }_{b }\in (-\infty , -\dot{z }_{c }),\;z _{b }=L _{0}\},\\ \end{array}\right. \end{aligned}$$
(67)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \partial D _{12}^{(b )}=\partial D _{21}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{12}^{(b )}=\rho _{21}^{(b )}\\ \quad \equiv \dot{z }_{b }+\dot{u }_{c }=0,\;z _{b }\in (-\infty , L _{0})\bigr \},\\ \partial D _{34}^{(b )}=\partial D _{43}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{34}^{(b )}=\rho _{43}^{(b )}\\ \quad \equiv \dot{z }_{b }+\dot{u }_{c }=0,\;z _{b }=L _{0}\bigr \},\\ \partial D _{13}^{(b )}=\partial D _{31}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{13}^{(b )}=\rho _{31}^{(b )}\\ \quad \equiv \dot{z }_{b }^{(cr)}=0,\; z _{b }^{(cr)}=L _{0},\;\dot{z }_{b }\in (-\dot{u }_{c },+\infty )\bigr \},\\ \partial D _{24}^{(b )}=\partial D _{24}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{24}^{(b )}=\rho _{42}^{(b )}\\ \quad \equiv \dot{z }_{b }^{(cr)}=0,\; z _{b }^{(cr)}=L _{0},\;\dot{z }_{b }\in (-\infty , -\dot{u }_{c })\bigr \},\\ \partial D _{1\infty }^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{1\infty }^{(b )}\\ \quad \equiv z _{b }-L _{0}=0,\; \dot{z }_{b }\in (0, +\infty )\bigr \},\\ \partial D _{2\infty }^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\;\rho _{2\infty }^{(b )}\\ \quad \equiv z _{b }-L _{0}=0,\; \dot{z }_{b }\in (-\infty , 0)\bigr \},\\ \end{array}\right. \end{aligned}$$
(68)
$$\begin{aligned}{} & {} \left. \begin{array}{lll} \angle D _{5}^{(b )}=\partial D _{12}^{(b )}\cap \partial D _{13}^{(b )}\\ \quad =\partial D _{12}^{(b )}\cap \partial D _{24}^{(b )}=\partial D _{34}^{(b )}\cap \partial D _{13}^{(b )}\\ \quad =\partial D _{34}^{(b )}\cap \partial D _{24}^{(b )}=\bigl \{(z _{b },\dot{z }_{b })\;|\\ \quad \;\rho _{12}^{(b )}=\rho _{34}^{(b )} \equiv \dot{z }_{b }+\dot{u }_{c }=0,\;\rho _{13}^{(b )}\\ \quad =\rho _{24}^{(b )}\equiv \dot{z }_{b }^{(cr)}=0,\; z _{b }^{(cr)}=L _{0}\bigr \},\\ \end{array}\right. \end{aligned}$$
(69)

where \(\dot{z }_{b }^{(cr)}\) and \(z _{b }^{(cr)}\) are interpreted as the corresponding velocity and displacement of the object \(m _{b }\) at the time when stick motion occurs or disappears.

Fig. 15
figure 15

Relative domains and boundaries divisions of object \(m _{b }\)

The partitioned phase space is shown in Fig. 15 for the object \(m _{b }\). The dashed black curve is interpreted as the negative of the velocity for the other object \(m _{c }\). After establishing coordinates with relative displacement \(z _{b }\) and relative velocity \(\dot{z }_{b }\) as horizontal and vertical axes, the non-stick free motion domains (\(D _{3}^{(b )}\), \(D _{4}^{(b )}\)) and related boundaries and edges (\(\partial D _{34}^{(b )}\), \(\partial D _{13}^{(b )}\), \(\partial D _{24}^{(b )}\), \(\angle D _{5}^{(b )}\)) can be marked with the same orange solid dot. The boundaries (\(\partial D _{1\infty }^{(b )}\), \(\partial D _{2\infty }^{(b )}\)) where the object \(m _{b }\) collides with \(m _{c }\) is depicted by a thick solid red line.

Appendix B

According to Luo [47] and the normal vectors in Eqs. (31) \(\sim \) (33), combined with the force and the derivative of the force in Sect. 3, the \(\textrm{G}\)-functions definitions and computational expressions are listed as follows.

The zero-order and first-order \(\textrm{G}\)-functions at the point \({\textbf{u}}_{i {} m }=(u _{i {} m },\,\dot{u }_{i {} m })\in \partial D _{\xi \sigma }^{(i )}\) are interpreted as

$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \sigma }^{(i )}}^{(0,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \sigma }^{(i )}}^{(0,\eta )}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \sigma }^{(i )}}^\textrm{T}\\ \quad \cdot {\textbf{F}}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })={F }_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm }), \end{array}\right. \end{aligned}$$
(70)
$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \sigma }^{(i )}}^{(1,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \sigma }^{(i )}}^{(1,\eta )}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \sigma }^{(i )}}^\textrm{T}\\ \quad \cdot D {{\textbf{F}}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}=D {{F }_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}, \end{array}\right. \end{aligned}$$
(71)

where \(\xi \ne \sigma \in \{1,2\},\,\,\,i \in \{a ,b ,c \},\,\,\,\eta \in \{1,2\}\);

$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \sigma }^{(i )}}^{(0,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \sigma }^{(i )}}^{(0,\eta )}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \sigma }^{(i )}}^\textrm{T}\\ \quad \cdot {\bar{\textbf{F}}}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })={\bar{F }}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm }), \end{array}\right. \end{aligned}$$
(72)
$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \sigma }^{(i )}}^{(1,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \sigma }^{(i )}}^{(1,\eta )}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \sigma }^{(i )}}^\textrm{T}\\ \quad \cdot D {{\bar{\textbf{F}}}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}=D {{\bar{F }}_{i }^{(\eta )}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}, \end{array}\right. \end{aligned}$$
(73)

where \(\xi \ne \sigma \in \{3,4\},\,\,\,i \in \{b ,c \},\,\,\,\eta \in \{3,4\}\).

The zero-order and first-order \(\textrm{G}\)-functions at the point \({\textbf{z}}_{b {} m }=(z _{b {} m },\,\dot{z }_{b {} m })\in \partial D _{\delta \tau }^{(b )}\,(\delta \ne \tau \in \{1,3\}\,\,\textrm{or}\,\,\delta \ne \tau \in \{2,4\})\) are interpreted as

$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\delta \tau }^{(b )}}^{(0,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\delta \tau }^{(b )}}^{(0,\eta )}({\textbf{z}}_{b {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\delta \tau }^{(b )}}^\textrm{T}\\ \quad \cdot {\textbf{W}}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm })={W }_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm }),\\ G _{\partial D _{\delta \tau }^{(b )}}^{(0,\bar{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\delta \tau }^{(b )}}^{(0,\bar{\eta })}({\textbf{z}}_{b {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\delta \tau }^{(b )}}^\textrm{T}\\ \quad \cdot {\bar{\textbf{W}}}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm })={\bar{W }}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm }); \end{array}\right\} \end{aligned}$$
(74)
$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\delta \tau }^{(b )}}^{(1,\eta )}({ t _{m }}_\pm )\equiv G _{\partial D _{\delta \tau }^{(b )}}^{(1,\eta )}({\textbf{z}}_{b {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\delta \tau }^{(b )}}^\textrm{T}\\ \quad \cdot {D \textbf{W}}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm })={D {} W }_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm }),\\ G _{\partial D _{\delta \tau }^{(b )}}^{(1,\bar{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\delta \tau }^{(b )}}^{(1,\bar{\eta })}({\textbf{z}}_{b {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\delta \tau }^{(b )}}^\textrm{T}\\ \quad \cdot {D \bar{\textbf{W}}}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm })={D {\bar{W }}}_{b }^{(\bar{\eta })}(\textbf{z}_{b {} m },{t _{m }}_{\pm }); \end{array}\right\} \end{aligned}$$
(75)

where \((\eta ,\bar{\eta })=(1,3)\,\,\,\textrm{if}\,\,\,\delta \ne \tau \in \{1,3\},\,\,\,(\eta ,\bar{\eta })=(2,4)\,\,\,\textrm{if}\,\,\,\delta \ne \tau \in \{2,4\}\).

The zero-order and first-order \(\textrm{G}\)-functions at the point \({\textbf{u}}_{i {} m }=(u _{i {} m },\,\dot{u }_{i {} m })\in \partial D _{\xi \tau }^{(i )}\) where the flow barrier exists are defined as

$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \tau }^{(i )}}^{(0,0\succ 0_{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \tau }^{(i )}}^{(0,0\succ 0_{\eta })}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \tau }^{(i )}}^\textrm{T}\\ \quad \cdot {\textbf{F}}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })={F }_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm }), \end{array}\right. \end{aligned}$$
(76)
$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi \tau }^{(i )}}^{(1,0\succ 0_{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi \tau }^{(i )}}^{(1,0\succ 0_{\eta })}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi \tau }^{(i )}}^\textrm{T}\\ \quad \cdot D {{\textbf{F}}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}=D {{F }_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}, \end{array}\right. \end{aligned}$$
(77)

where \(\xi \ne \sigma \in \{1,2\},\,\,\,i \in \{a ,b ,c \},\,\,\,\eta \in \{1,2\}\);

$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi j }^{(i )}}^{(0,0\succ 0_{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi j }^{(i )}}^{(0,0\succ 0_{\eta })}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi j }^{(i )}}^\textrm{T}\\ \quad \cdot {\bar{\textbf{F}}}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })={\bar{F }}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm }), \end{array}\right. \end{aligned}$$
(78)
$$\begin{aligned} \left. \begin{array}{lll} G _{\partial D _{\xi j }^{(i )}}^{(1,0\succ 0_{\eta })}({ t _{m }}_\pm )\equiv G _{\partial D _{\xi j }^{(i )}}^{(1,0\succ 0_{\eta })}({\textbf{u}}_{i {} m },{ t _{m }}_\pm )={\textbf{n}}_{\partial D _{\xi j }^{(i )}}^\textrm{T}\\ \quad \cdot D {{\bar{\textbf{F}}}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}=D {{\bar{F }}_{i }^{(0\succ 0_{\eta })}(\textbf{u}_{i {} m },{t _{m }}_{\pm })}, \end{array}\right. \end{aligned}$$
(79)

where \(\xi \ne \sigma \in \{3,4\},\,\,\,i \in \{b ,c \},\,\,\,\eta \in \{3,4\}\).

Appendix C

According to the description of the discontinuous boundary in Eq. (59), the two-dimensional transformation sets of the object \(m _{a }\) are expressed as

$$\begin{aligned} \left\{ \begin{array}{lll} {}^{0}\sum ^{(a )}_{12}=\{(u _{a {} k },\dot{u }_{a {} k },t _k )|\\ \quad u _{a {} k }\in (-\infty ,+\infty ),\dot{u }_{a {} k }=0^0\},\\ {}^{+}\sum ^{(a )}_{12}=\{(u _{a {} k },\dot{u }_{a {} k },t _k )|\\ \quad u _{a {} k }\in (-\infty ,+\infty ),\dot{u }_{a {} k }=0^+\},\\ {}^{-}\sum ^{(a )}_{12}=\{(u _{a {} k },\dot{u }_{a {} k },t _k )|\\ \quad u _{a {} k }\in (-\infty ,+\infty ),\dot{u }_{a {} k }=0^-\};\\ \end{array}\right. \end{aligned}$$
(80)

where \(u _{a {} k }=u _{a }(t _k )\) and \(\dot{u }_{a {} k }=\dot{u }_{a }(t _k )\) (\(k \in {\textbf{N}}\)) represent the transformation displacement and transformation velocity of the object \(m _{a }\) at the corresponding \(t _k \) moment, respectively.

Considering the stick motion and collision motion of the system, the two-dimensional transformation sets of the two objects \(m _{b }\) and \(m _{c }\) are denoted as

$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} {}^{0}\sum ^{(b )}_{12}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }\in (-\infty ,u _{c {} k }+L _{0}),\dot{u }_{b {} k }=0^0\},\\ {}^{+}\sum ^{(b )}_{12}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }\in (-\infty ,u _{c {} k }+L _{0}),\dot{u }_{b {} k }=0^+\},\\ {}^{-}\sum ^{(b )}_{12}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }\in (-\infty ,u _{c {} k }+L _{0}),\dot{u }_{b {} k }=0^-\},\\ {}^{0}\sum ^{(c )}_{12}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }\in (u _{b {} k }-L _{0},+\infty ),\dot{u }_{c {} k }=0^0\},\\ {}^{+}\sum ^{(c )}_{12}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }\in (u _{b {} k }-L _{0},+\infty ),\dot{u }_{c {} k }=0^+\},\\ {}^{-}\sum ^{(c )}_{12}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }\in (u _{b {} k }-L _{0},+\infty ),\dot{u }_{c {} k }=0^-\};\\ \end{array}\right. \end{aligned}$$
(81)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} {}^{0}\sum ^{(b )}_{34}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }=u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^0\},\\ {}^{+}\sum ^{(b )}_{34}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }=u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^+\},\\ {}^{-}\sum ^{(b )}_{34}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|\\ \quad u _{b {} k }=u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^-\},\\ {}^{0}\sum ^{(c )}_{34}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }=u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^0\},\\ {}^{+}\sum ^{(c )}_{34}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }=u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^+\},\\ {}^{-}\sum ^{(c )}_{34}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|\\ \quad u _{c {} k }=u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^-\};\\ \end{array}\right. \end{aligned}$$
(82)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} {}^{0}\sum ^{(b )}_{5}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^0,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\},\\ {}^{+}\sum ^{(b )}_{5}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^+,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\},\\ {}^{-}\sum ^{(b )}_{5}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{c {} k }+L _{0},\dot{u }_{b {} k }=0^-,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\},\\ {}^{0}\sum ^{(c )}_{5}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^0,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\},\\ {}^{+}\sum ^{(c )}_{5}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^+,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\},\\ {}^{-}\sum ^{(c )}_{5}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{b {} k }-L _{0},\dot{u }_{c {} k }=0^-,\dot{u }_{b {} k }-\dot{u }_{c {} k }=0\}.\\ \end{array}\right. \end{aligned}$$
(83)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \sum ^{(b )}_{13}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{c {} k }+L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }=0,\dot{u }_{b {} k }\in (0,+\infty )\},\\ \sum ^{(b )}_{24}=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{c {} k }+L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }=0,\dot{u }_{b {} k }\in (-\infty ,0)\},\\ \sum ^{(c )}_{13}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{b {} k }-L _{0},\dot{u }_{c {} k }-\dot{u }_{b {} k }=0,\dot{u }_{c {} k }\in (0,+\infty )\},\\ \sum ^{(c )}_{24}=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{b {} k }-L _{0},\dot{u }_{c {} k }-\dot{u }_{b {} k }=0,\dot{u }_{c {} k }\in (-\infty ,0)\};\\ \end{array}\right. \end{aligned}$$
(84)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \sum ^{(b )}_{1\infty }=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{b {} k }-u _{c {} k }=L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }>0\},\\ \sum ^{(b )}_{2\infty }=\{(u _{b {} k },\dot{u }_{b {} k },t _k )|u _{b {} k }\\ \quad =u _{b {} k }-u _{c {} k }=L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }<0\},\\ \sum ^{(c )}_{1\infty }=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{c {} k }-u _{b {} k }=L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }>0\},\\ \sum ^{(c )}_{2\infty }=\{(u _{c {} k },\dot{u }_{c {} k },t _k )|u _{c {} k }\\ \quad =u _{c {} k }-u _{b {} k }=L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }<0\};\\ \end{array}\right. \end{aligned}$$
(85)

where \(u _{i {} k }=u _{i }(t _k )\) and \(\dot{u }_{i {} k }=\dot{u }_{i }(t _k )\) (\(i \in \{b ,c \}\),\(k \in {\textbf{N}}\)) represent the transformation displacement and transformation velocity of the object \(m _{i }\) (\(i \in \{b ,c \}\) at the corresponding \(t _k \) moment, respectively.

According to the above two-dimensional transformation sets, the four-dimensional transformation sets that treat the two objects \(m _{b }\) and \(m _{c }\) as a whole can be defined as

$$\begin{aligned}{} & {} \left. \begin{array}{lll} {}^{(\mu \nu )}\sum ^{(b {} c )}_{12}={}^{(\mu )}\sum ^{(b )}_{12}\bigotimes {}^{(\nu )}\sum ^{(c )}_{12}\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }<u _{c {} k }\\ \quad +L _{0}, u _{c {} k }>u _{b {} k }-L _{0},\\ \quad \dot{u }_{b {} k }=0^{\mu },\dot{u }_{c {} k }=0^{\nu }\},\\ \end{array}\right. \end{aligned}$$
(86)
$$\begin{aligned}{} & {} \left. \begin{array}{lll} {}^{(\xi )}\sum ^{(b {} c )}_{34}={}^{(\xi )}\sum ^{(b )}_{34}\bigotimes {}^{(\xi )}\sum ^{(c )}_{34}\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }=L _{0},\\ \quad \dot{u }_{b {} k }=0^{\xi },\dot{u }_{c {} k }=0^{\xi }\},\\ \end{array}\right. \end{aligned}$$
(87)
$$\begin{aligned}{} & {} \left. \begin{array}{lll} {}^{(\zeta )}\sum ^{(b {} c )}_{5}={}^{(\zeta )}\sum ^{(b )}_{5}\bigotimes {}^{(\zeta )}\sum ^{(c )}_{5}\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }=L _{0},\\ \quad \dot{u }_{b {} k }=0^{\zeta },\dot{u }_{c {} k }=0^{\zeta }\},\\ \end{array}\right. \end{aligned}$$
(88)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \sum ^{(b {} c )}_{13}=\sum ^{(b )}_{13}\bigotimes \sum ^{(c )}_{13}\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }\\ \quad =L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }=0,\\ \quad \dot{u }_{b {} k }>0,\dot{u }_{c {} k }>0\},\\ \sum ^{(b {} c )}_{24}=\sum ^{(b )}_{24}\bigotimes \sum ^{(c )}_{24}\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }\\ \quad =L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }=0,\\ \quad \dot{u }_{b {} k }<0,\dot{u }_{c {} k }<0\};\\ \end{array}\right. \end{aligned}$$
(89)
$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \sum ^{(b {} c )}_{1\infty }=\sum ^{(b )}_{1\infty }\bigotimes \sum ^{(c )}_{1\infty }\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }\\ \quad =L _{0},\dot{u }_{b {} k }-\dot{u }_{c {} k }>0\},\\ \sum ^{(b {} c )}_{2\infty }=\sum ^{(b )}_{2\infty }\bigotimes \sum ^{(c )}_{2\infty }\\ \quad =\{(u _{b {} k },\dot{u }_{b {} k },u _{c {} k },\dot{u }_{c {} k },t _k )|u _{b {} k }-u _{c {} k }\\ \quad =L _{0}, \dot{u }_{b {} k }-\dot{u }_{c {} k }<0\};\\ \end{array}\right. \end{aligned}$$
(90)

where \(\bigotimes \) represents the direct product of two transformation sets, the symbols \(\mu ,\nu ,\xi ,\zeta \in \{0,+,-\}\).

Appendix D

As shown in Fig. 16, the corresponding two-dimensional basic mappings of the object \(m _{a }\) are represented as

$$\begin{aligned} \left. \begin{array}{lll} P_1^{(a )}:{}^{0}\sum _{12}^{(a )}\rightarrow {}^{0}\sum _{12}^{(a )},\,\, P_2^{(a )}:{}^{+}\sum _{12}^{(a )}\rightarrow {}^{+}\sum _{12}^{(a )},\,\, \\ P_3^{(a )}:{}^{-}\sum _{12}^{(a )}\rightarrow {}^{-}\sum _{12}^{(a )}. \end{array}\right. \nonumber \\ \end{aligned}$$
(91)
Fig. 16
figure 16

Switching sets and two-dimensional mapping structures of object \(m _{a }\)

Fig. 17
figure 17

Switching sets and two-dimensional mapping structures: a object \(m _{b }\) and b object \(m _{c }\)

Based on the two-dimensional transformation sets in Eqs. (81)–(85), the corresponding two-dimensional basic mappings can be given. All two-dimensional mappings (including local mappings and global mappings) of two objects \(m _{i }\) \((i =b ,c )\) are

$$\begin{aligned} \left\{ \begin{array}{lll} P_4^{(i )}:{}^{0}\sum _{12}^{(i )}\rightarrow {}^{0}\sum _{12}^{(i )},\,\, P_5^{(i )}:{}^{+}\sum _{12}^{(i )}\rightarrow {}^{+}\sum _{12}^{(i )},\,\, \\ P_6^{(i )}:{}^{-}\sum _{12}^{(i )}\rightarrow {}^{-}\sum _{12}^{(i )},\\ P_7^{(i )}:{}^{0}\sum _{34}^{(i )}\rightarrow {}^{0}\sum _{34}^{(i )},\,\, P_8^{(i )}:{}^{+}\sum _{34}^{(i )}\rightarrow {}^{+}\sum _{34}^{(i )},\,\, \\ P_9^{(i )}:{}^{-}\sum _{34}^{(i )}\rightarrow {}^{-}\sum _{34}^{(i )},\\ P_{10}^{(i )}:{}^{0}\sum _{5}^{(i )}\rightarrow {}^{0}\sum _{5}^{(i )},\,\, P_{11}^{(i )}:{}^{+}\sum _{5}^{(i )}\rightarrow {}^{+}\sum _{5}^{(i )},\,\, \\ P_{12}^{(i )}:{}^{-}\sum _{5}^{(i )}\rightarrow {}^{-}\sum _{5}^{(i )},\\ P_{13}^{(i )}:{}^{+}\sum _{12}^{(i )}\rightarrow \sum _{13}^{(i )},\,\, \\ P_{14}^{(i )}:\sum _{13}^{(i )}\rightarrow {}^{+}\sum _{34}^{(i )},\,\, P_{15}^{(i )}:\sum _{13}^{(i )}\rightarrow {}^{+}\sum _{5}^{(i )},\\ P_{16}^{(i )}:{}^{-}\sum _{34}^{(i )}\rightarrow \sum _{24}^{(i )},\,\, P_{17}^{(i )}:\sum _{24}^{(i )}\rightarrow {}^{-}\sum _{12}^{(i )},\,\, \\ P_{18}^{(i )}:\sum _{24}^{(i )}\rightarrow {}^{-}\sum _{5}^{(i )},\\ P_{19}^{(i )}:{}^{+}\sum _{12}^{(i )}\rightarrow \sum _{1\infty }^{(i )},\,\, P_{20}^{(i )}:\sum _{1\infty }^{(i )}\rightarrow \sum _{2\infty }^{(i )},\,\, \\ P_{21}^{(i )}:\sum _{2\infty }^{(i )}\rightarrow \sum _{12}^{(i )}.\\ \end{array}\right. \end{aligned}$$
(92)

All the mapping structures of the two objects \(m _{i }\) \((i =b ,c )\) without taking collision into account are depicted in Fig. 17, and the mapping structures with collision are shown in Fig. 18.

Based on the four-dimensional transformation sets in Eqs. (86)–(90), the corresponding four-dimensional basic mappings can be given. All four-dimensional mappings (including local mappings and global mappings) of two objects \(m _{i }\) \((i =b ,c )\) are

$$\begin{aligned} \left\{ \begin{array}{lll} P_{rs }^{(bc )}=(P_{r }^{(b )},P_{s }^{(c )}):{}^{(\mu \nu )}\sum _{12}^{(bc )}\rightarrow {}^{(\mu \nu )}\sum _{12}^{(bc )},\\ P_{e }^{(bc )}=(P_{e }^{(b )},P_{e }^{(c )}):{}^{(\xi )}\sum _{34}^{(bc )}\rightarrow {}^{(\xi )}\sum _{34}^{(bc )},\\ P_{q }^{(bc )}=(P_{q }^{(b )},P_{q }^{(c )}):{}^{(\zeta )}\sum _{5}^{(bc )}\rightarrow {}^{(\zeta )}\sum _{5}^{(bc )},\\ P_{13}^{(bc )}=(P_{13}^{(b )},P_{13}^{(c )}):{}^{+}\sum _{12}^{(bc )}\rightarrow \sum _{13}^{(bc )},\\ P_{14}^{(bc )}=(P_{14}^{(b )},P_{14}^{(c )}):\sum _{13}^{(bc )}\rightarrow {}^{+}\sum _{34}^{(bc )},\\ P_{15}^{(bc )}=(P_{15}^{(b )},P_{15}^{(c )}):\sum _{13}^{(bc )}\rightarrow {}^{+}\sum _{5}^{(bc )},\\ P_{16}^{(bc )}=(P_{16}^{(b )},P_{16}^{(c )}):{}^{-}\sum _{34}^{(bc )}\rightarrow \sum _{24}^{(bc )},\\ P_{17}^{(bc )}=(P_{17}^{(b )},P_{17}^{(c )}):\sum _{24}^{(bc )}\rightarrow {}^{-}\sum _{12}^{(bc )},\\ P_{18}^{(bc )}=(P_{18}^{(b )},P_{18}^{(c )}):\sum _{24}^{(bc )}\rightarrow {}^{-}\sum _{5}^{(bc )},\\ P_{19}^{(bc )}=(P_{19}^{(b )},P_{19}^{(c )}):{}^{+}\sum _{12}^{(bc )}\rightarrow \sum _{1\infty }^{(bc )},\\ P_{20}^{(bc )}=(P_{20}^{(b )},P_{20}^{(c )}):\sum _{1\infty }^{(bc )}\rightarrow \sum _{2\infty }^{(bc )},\\ P_{21}^{(bc )}=(P_{21}^{(b )},P_{21}^{(c )}):\sum _{2\infty }^{(bc )}\rightarrow {}^{-}\sum _{12}^{(bc )},\\ \end{array}\right. \end{aligned}$$
(93)

where \(r =4\) corresponds to \(\mu =0\), \(r =5\) corresponds to \(\mu =+\), \(r =6\) corresponds to \(\mu =-\); \(s =4\) corresponds to \(\nu =0\), \(s =5\) corresponds to \(\nu =+\); \(s =6\) corresponds to \(\nu =-\); \(e =7\) corresponds to \(\xi =0\), \(e =8\) corresponds to \(\xi =+\), \(e =9\) corresponds to \(\xi =-\); \(q =10\) corresponds to \(\zeta =0\), \(q =11\) corresponds to \(\zeta =+\), \(q =12\) corresponds to \(\zeta =-\).

Fig. 18
figure 18

Switching sets and two-dimensional mapping structures of object \(m _{b }\) with collision motion

From the above analysis, the six-dimensional total mappings \(P_{\Delta }\) \((\Delta =\theta \tau ,\tau \in \{rs ,e ,q ,13,14,15,16,17,18, 19,20,21\})\) (including local mappings and global mappings) of the 3-DOF system can be obtained as

$$\begin{aligned} \left\{ \begin{array}{lll} P_{\theta rs }=(P_{\theta }^{(a )},P_{rs }^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{(\mu \nu )}\sum _{12}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes {}^{(\mu \nu )}\sum _{12}^{(bc )},\\ P_{\theta e }=(P_{\theta }^{(a )},P_{e }^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{(\xi )}\sum _{34}^{(bc )} \\ \quad \rightarrow {}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{(\xi )}\sum _{34}^{(bc )},\\ P_{\theta q }=(P_{\theta }^{(a )},P_{q }^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{(\zeta )}\sum _{5}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{(\zeta )}\sum _{5}^{(bc )},\\ P_{\theta 13}=(P_{\theta }^{(a )},P_{13}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{+}\sum _{12}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{13}^{(bc )},\\ P_{\theta 14}=(P_{\theta }^{(a )},P_{14}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{13}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes {}^{+}\sum _{34}^{(bc )},\\ P_{\theta 15}=(P_{\theta }^{(a )},P_{15}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{13}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes {}^{+}\sum _{5}^{(bc )},\\ P_{\theta 16}=(P_{\theta }^{(a )},P_{16}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{-}\sum _{34}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes \sum _{24}^{(bc )},\\ P_{\theta 17}=(P_{\theta }^{(a )},P_{17}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{24}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes {}^{-}\sum _{12}^{(bc )},\\ P_{\theta 18}=(P_{\theta }^{(a )},P_{18}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{24}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes {}^{-}\sum _{5}^{(bc )},\\ P_{\theta 19}=(P_{\theta }^{(a )},P_{19}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{+}\sum _{12}^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes \sum _{1\infty }^{(bc )},\\ P_{\theta 20}=(P_{\theta }^{(a )},P_{20}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{1\infty }^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )} \sum _{12}^{(a )}\bigotimes \sum _{2\infty }^{(bc )},\\ P_{\theta 21}=(P_{\theta }^{(a )},P_{21}^{(bc )}):{}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes \sum _{2\infty }^{(bc )}\\ \quad \rightarrow {}^{(\varepsilon )}\sum _{12}^{(a )}\bigotimes {}^{-}\sum _{12}^{(bc )},\\ \end{array}\right. \nonumber \\ \end{aligned}$$
(94)

where the symbols \(\theta \in \{1,2,3\}\), \(\varepsilon \in \{0,+,-\}\). When \(\theta =1\), \(\varepsilon =0\); when \(\theta =2\), \(\varepsilon =+\); when \(\theta =3\), \(\varepsilon =-\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Fan, J. Analysis of discontinuous dynamical behaviors for a 3-DOF friction collision system with dynamic vibration absorber. Nonlinear Dyn 112, 5077–5107 (2024). https://doi.org/10.1007/s11071-023-09272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09272-2

Keywords

Navigation