Skip to main content
Log in

Non-stationary friction-induced vibration with multiple contact points

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modelling and simulating of the friction-induced vibration of a multi-point contact system are widely encountered and challenging problems. Non-smooth transitions between stick and slip and between contact and separation (during vibration) at each contact point can happen simultaneously in practice, which should be considered together in a theoretical model. This work is innovative in that it addresses the comprehensive dynamic analysis of a multi-point contact system considering the two types of complex non-smooth behaviour at the interface as well as mode-coupling instability, which has not been studied in previous research on multi-point contact dynamics, to the authors' best knowledge. To deal with this complex situation, a new mix-level time iteration scheme for the simulations of the non-smooth/discontinuous system with elastic contact and friction is formulated. This is an essential step as it provides a generic and effective approach that can be used for different systems with the same contact features regardless of the internal structural configurations of the systems. Interesting results and discoveries through a detailed dynamic analysis of a 10-DoF system with two sliders are reported: (1) the mass and mass ratio between the components linked with the contact interface are the essential factors of mode-coupling instability and mode-veering phenomenon through the stability analysis. These findings serve to guide the subsequent transient analysis, which is much more time-consuming and would otherwise be costly to use for revealing the roles of these masses; (2) the individual contributions of non-smoothness and mode-coupling instability, and the critical influences of the contact states, the normal compression force, and the belt speed on the vibration frequency and non-stationary vibration range of the components in the system are clarified from the complex dynamic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available as the basic equations and information have been clearly presented, but are available from the corresponding author on reasonable request.

References

  1. Akay, A., Giannini, O., Massi, F., Sestieri, A.: Disc brake squeal characterization through simplified test rigs. Mech. Syst. Signal Process. 23, 2590–2607 (2009)

    Google Scholar 

  2. Weiss, C., Hothan, A., Morlock, M., Hoffmann, N.: Friction-Induced vibration of artificial hip joints. GAMM-Mitteilungen 32(2), 193–204 (2009)

    MATH  Google Scholar 

  3. Sinou, J.J., Dereure, O., Mazet, G.B., Thouverez, F., Jezequel, L.: Friction-induced vibration for an aircraft brake system—Part 1: experimental approach and stability analysis. Int. J. Mech. Sci. 48(5), 536–554 (2006)

    MATH  Google Scholar 

  4. Cai, L., and Song, G.: "A smooth robust nonlinear controller for robot manipulators with joint stick-slip friction," Proc. [1993] In: Proceedings IEEE International Conference on Robotics and Automation, pp. 449–454 vol.443

  5. Gamus, B., Salem, L., Gat, A.D., Or, Y.: Understanding Inchworm crawling for soft-robotics. IEEE Robot. Autom. Lett. 5(2), 1397–1404 (2020)

    Google Scholar 

  6. Xu, C., Li, B., Wu, T.: Wear characterization under sliding–rolling contact using friction-induced vibration features Proceedings of the Institution of Mechanical Engineers. Part J J. Eng. Tribol 236(4), 634–647 (2021)

    Google Scholar 

  7. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—Part II: dynamics and modeling. Appl. Mech. Rev. 47(7), 227–253 (1994)

    Google Scholar 

  8. Earles, S.W.E., Chambers, P.W.: Disc brake squeal noise generation: predicting its dependency on system parameters including damping. Int. J. Veh. Des. 8(4–6), 538–552 (1987)

    Google Scholar 

  9. Pascal, M.: Sticking and nonsticking orbits for a two-degree-of-freedom oscillator excited by dry friction and harmonic loading. Nonlinear Dyn. 77(1–2), 267–276 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Stefański, A., Wojewoda, J., Wiercigroch, M., Kapitaniak, T.: Chaos caused by non-reversible dry friction. Chaos, Solitons Fractals 16(5), 661–664 (2003)

    MATH  Google Scholar 

  11. Ghazaly, N., Ahmed, I., El- Sharkawy, M.: "A review of automotive brake squeal mechanisms. J. Mech. Des. Vib. 1, 5–9 (2014)

    Google Scholar 

  12. Pilipchuk, V.N., Tan, C.A.: Creep—slip capture as a possible source of squeal during decelerated sliding. Nonlinear Dyn. 35(3), 259–285 (2004)

    MATH  Google Scholar 

  13. Ghorbel, A., Zghal, B., Abdennadher, M., Walha, L., Haddar, M.: Investigation of friction-induced vibration in a disk brake model, including mode-coupling and gyroscopic mechanisms. Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. 234(2–3), 887–896 (2019)

    Google Scholar 

  14. Sinou, J.J., Thouverez, F., Jezequel, L.: Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model. J. Sound Vib. 265(3), 527–559 (2003)

    Google Scholar 

  15. Hoffmann, N., Gaul, L.: A sufficient criterion for the onset of sprag-slip oscillations. Arc. Appl. Mech. (Ingenieur Archiv) 73(9–10), 650–660 (2004)

    MATH  Google Scholar 

  16. Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)

    MATH  Google Scholar 

  17. Kang, J., Krousgrill, C.M., Sadeghi, F.: Oscillation pattern of stick–slip vibrations. Int. J. Non-Linear Mech. 44, 820–828 (2009)

    Google Scholar 

  18. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 332(1624), 89–105 (1990)

    MATH  Google Scholar 

  19. Chomette, B., Sinou, J.-J.: On the use of linear and nonlinear controls for mechanical systems subjected to friction-induced vibration. Appl. Sci. 10(6), 2085 (2020)

    Google Scholar 

  20. Pilipchuk, V., Olejnik, P., Awrejcewicz, J.: Transient friction-induced vibrations in a 2-DOF model of brakes. J. Sound Vib. 344, 297–312 (2015)

    Google Scholar 

  21. Kumar, P., Narayanan, S.: Nonlinear dynamics of dry friction oscillator subjected to combined harmonic and random excitations. Nonlinear Dyn. 109(2), 755–778 (2022)

    Google Scholar 

  22. Pikunov, D., Stefanski, A.: Numerical analysis of the friction-induced oscillator of Duffing’s type with modified LuGre friction model. J. Sound Vib. 440, 23–33 (2019)

    Google Scholar 

  23. Elmer, F.J.: Nonlinear dynamics of dry friction. J. Phys. A 30, 6057–6063 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Huang, T., Wei, D., Zhu, Y., Jiang, P., Zhang, B., Yin, A.: The establishment and dynamic analysis of a new friction model of brake pair considering interface morphology and particles. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(9), 4988–5004 (2022)

    Google Scholar 

  25. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Google Scholar 

  26. Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Google Scholar 

  27. Elmaian, A., Gautier, F., Pezerat, C., Duffal, J.M.: How can automotive friction-induced noises be related to physical mechanisms? Appl. Acoust. 76, 391–401 (2014)

    Google Scholar 

  28. Li, Z., Ouyang, H., Guan, Z.: Nonlinear friction-induced vibration of a slider-belt system. J. Vib. Aacous.-Trans. ASME (2016). https://doi.org/10.1115/1.4033256

    Article  Google Scholar 

  29. Li, Z., Ouyang, H., Guan, Z.: Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment. Nonlinear Dyn. 87(2), 1045–1067 (2017)

    Google Scholar 

  30. Chen, F., Ouyang, H., Wang, X.: A new mechanism for friction-induced vibration and noise. Friction. 11, 302–305 (2022)

    Google Scholar 

  31. Awrejcewicz, J., Dzyubak, L., Grebogi, C.: Estimation of chaotic and regular (stick–slip and slip–slip) oscillations exhibited by coupled oscillators with dry friction. Nonlinear Dyn. 42(4), 383–394 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Pascal, M.: Dynamics of coupled oscillators excited by dry friction. J. Comput. Nonlinear Dyn. (2008). https://doi.org/10.1115/1.2908272

    Article  Google Scholar 

  33. He, B., Ouyang, H., He, S., Ren, X., Mei, Y.: Dynamic analysis of integrally shrouded group blades with rubbing and impact. Nonlinear Dyn. 92(4), 2159–2175 (2018)

    Google Scholar 

  34. Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer-Verlag, Berlin Heidelberg (2004)

    MATH  Google Scholar 

  35. Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    MATH  Google Scholar 

  37. Jean, M., and Moreau, J. J., "Dynamics in the presence of unilateral contacts and dry friction: a numerical approach," In: Proc. Unilateral Problems in Structural Analysis — 2, G. Del Piero, and F. Maceri, eds., Springer, Vienna, pp. 151–196

  38. van de Vrande, B.L., van Campen, D.H., de Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 159–171 (1999)

    MATH  Google Scholar 

  39. Kang, J.: Lyapunov exponent of friction-induced vibration under smooth friction curve. J. Mech. Sci. Technol. 32(8), 3563–3567 (2018)

    Google Scholar 

  40. Liu, N., Ouyang, H.: Friction-induced vibration of a slider-on-rotating-disc system considering uniform and non-uniform friction characteristics with bi-stability. Mech. Syst. Signal Process. 164, 108222 (2022)

    Google Scholar 

  41. Miyasato, H.H., Simionatto, V.G.S., Dias, M.: Simulation of a mass-on-belt dynamical model with the Zener viscoelastic support. J. Sound Vib. 534, 117025 (2022)

    Google Scholar 

  42. Moreau, J.J.: Unilateral Contact and Dry Friction in Finite Freedom Dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, pp. 1–82. Springer Vienna, Vienna (1988)

    Google Scholar 

  43. Studer, C., Leine, R., Glocker, C.: Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int. J. Numer. Meth. Eng. 76(11), 1747–1781 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Studer, C., and Glocker, C.: "Simulation of non-smooth mechanical systems with many unilateral constraints. In: Proceedings ENOC-2005 Eindhoven (2005)

  46. Zhang, H.M., Xing, Y.F.: A framework of time integration methods for nonsmooth systems with unilateral constraints. Appl. Math. Comput. 363, 124590 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Pfeiffer, F., Foerg, M., Ulbrich, H.: Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Eng. 195(50), 6891–6908 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, X.-D., Wang, Q.: LCP method for a planar passive dynamic walker based on an event-driven scheme. Acta. Mech. Sin. 34(3), 578–588 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Song, N., Peng, H., Xu, X., Wang, G.: Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory 154, 104053 (2020)

    Google Scholar 

  50. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Sys.Dyn. 13(4), 447–463 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Zhuang, F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013)

    MathSciNet  Google Scholar 

  52. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A. Solids 21(5), 869–896 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Champneys, A.R., Várkonyi, P.L.: The Painlevé paradox in contact mechanics. IMA J. Appl. Math. 81(3), 538–588 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Charles, A., Ballard, P.: "Existence and uniqueness of solutions to dynamical unilateral contact problems with coulomb friction: the case of a collection of points. ESAIM Math. Model. Numer. Anal. 48(1), 1–25 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Peiret, A., González, F., Kövecses, J., Teichmann, M.: Co-Simulation of multibody systems with contact using reduced interface models. J. Comput. Nonlinear Dyn. 15(4), 041001 (2020)

    Google Scholar 

  56. Brogliato, B.: Nonsmooth Mechanics: Models Dynamics and Control. Springer, London (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from China Postdoctoral Science Foundation and National Natural Science Foundation of China (No. 2019M652564 and 12272324). Support from the Australian Research Council to SM and YG is also gratefully acknowledged (FT180100338; IC190100020).

Funding

Postdoctoral Research Foundation of China,2019M652564,Zilin Li,Australian Research Council,180100338,Saulo Martelli,190100020,Yuantong Gu,National Natural Science Foundation of China,12272324,Huajiang Ouyang

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilin Li, Huajiang Ouyang or Ron-Han Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the 10-DoF model, the kinetic energy of the system is:

$$ \begin{aligned} T = & \frac{1}{2}m_{1} \dot{x}_{1}^{2} + \frac{1}{2}m_{4} \dot{x}_{4}^{2} + \frac{1}{2}m_{2} \dot{x}_{2}^{2} + \frac{1}{2}m_{3} \dot{x}_{3}^{2} + \frac{1}{2}m_{2} \dot{y}_{2}^{2} + \frac{1}{2}m_{3} \dot{y}_{3}^{2} + \frac{1}{2}m_{4} \dot{y}_{4}^{2} \\ & + \frac{1}{2}m\dot{x}_{5}^{2} + \frac{1}{2}m\left( {\frac{{l_{c2} }}{{l_{c1} + l_{c2} }}\dot{y}_{5} + \frac{{l_{c1} }}{{l_{c1} + l_{c2} }}\dot{y}_{6} } \right)^{2} + \frac{1}{2}J\left( {\frac{{\dot{y}_{5} - \dot{y}_{6} }}{{l_{c1} + l_{c2} }}} \right)^{2} \\ \end{aligned} $$

The potential energy of the system is:

$$ \begin{aligned} V = & \frac{1}{2}\left[ {k_{1} x_{1}^{2} + k_{2} \left( {x_{2} - x_{1} } \right)^{2} + k_{3} \left( {x_{3} - x_{2} } \right)^{2} + k_{4} x_{3}^{2} + k_{6} \left( {y_{4} - y_{2} } \right)^{2} } \right. \\ & + k_{5} x_{4}^{2} + k_{7} \left[ {\left( {x_{3} - x_{4} } \right)\sin \theta - \left( {y_{3} - y_{4} } \right)\cos \theta } \right]^{2} \\ \left. \begin{aligned} & + k_{c1} \left( {y_{2} - y_{5} } \right)^{2} + k_{c2} \left( {y_{3} - y_{6} } \right)^{2} + k_{8} x_{5}^{2} \\ & + k_{9} \left( {\frac{{l_{k1} + l_{c2} }}{{l_{c1} + l_{c2} }}y_{5} - \frac{{l_{k1} - l_{c1} }}{{l_{c1} + l_{c2} }}y_{6} } \right)^{2} + k_{10} \left( {\frac{{l_{c2} - l_{k2} }}{{l_{c1} + l_{c2} }}y_{5} + \frac{{l_{k2} + l_{c1} }}{{l_{c1} + l_{c2} }}y_{6} } \right)^{2} \\ \end{aligned} \right] \\ \end{aligned} $$

in which \(J\) is the moment of inertia \(J = \frac{{m\left( {l_{c1} + l_{c2} } \right)^{2} }}{12}\).

The Lagrange’s equation is expressed as:

$$ \frac{\partial }{\partial t}\frac{\partial L}{{\partial \dot{q}_{i} }} + \frac{\partial L}{{\partial q_{i} }} = Q_{i} ,\;i = 1,2,...,9 $$

in which \(L = T - V,q_{i}\) is the ith element of generalised coordinate vector.

\({\mathbf{q}} = \left[ {\begin{array}{*{20}c} {x_{1} } & {\begin{array}{*{20}c} {x_{4} } & {y_{4} } \\ \end{array} } & {x_{2} } & {x_{3} } & {y_{2} } & {y_{3} } & {x_{5} } & {y_{5} } & {y_{6} } \\ \end{array} } \right]^{T} ,\),

and \(Q_{i}\) is the ith element of the generalised force vector

$$ \left[ {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {\mu k_{c1} \left( {y_{5} - y_{2} } \right)} & {\mu k_{c2} \left( {y_{6} - y_{3} } \right)} & 0 & 0 & { - \mu k_{c1} \left( {y_{5} - y_{2} } \right) - \mu k_{c2} \left( {y_{6} - y_{3} } \right)} & 0 & 0 \\ \end{array} } \right]^{T} , $$

The equation of motion of the 10-DoF model given in Eq. (17) can be obtained from the Lagrange’s equation. When the above mathematical expressions of the kinetic energy, potential energy, and the generalised force vector are substituted into the Lagrange’s equation, the mass matrix and the stiffness matrix can be derived as follows:

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {m_{1} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {m_{4} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {m_{4} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {m_{2} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {m_{3} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {m_{2} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {m_{3} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & m & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {m\left( {\frac{{l_{c2} }}{{l_{c1} + l_{c2} }}} \right)^{2} + \frac{J}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} & {m\frac{{l_{c1} l_{c2} }}{{\left( {l_{c1} + l_{c2} } \right)^{2} }} - \frac{J}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {m\frac{{l_{c1} l_{c2} }}{{\left( {l_{c1} + l_{c2} } \right)^{2} }} - \frac{J}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} & {m\left( {\frac{{l_{c1} }}{{l_{c1} + l_{c2} }}} \right)^{2} + \frac{J}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} \\ \end{array} } \right] $$

and

$$ {\mathbf{K}} = \left[ {\begin{array}{*{20}c} {k_{1} + k_{2} } & 0 & 0 & { - k_{2} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {k_{5} + k_{7} \sin^{2} \theta } & { - k_{7} \sin \theta \cos \theta } & 0 & { - k_{7} \sin^{2} \theta } & 0 & {k_{7} \sin \theta \cos \theta } & 0 & 0 & 0 \\ 0 & { - k_{7} \sin \theta \cos \theta } & {k_{6} + k_{8} + k_{7} \cos \theta^{2} } & 0 & {k_{7} \sin \theta \cos \theta } & { - k_{6} } & { - k_{7} \cos \theta^{2} } & 0 & 0 & 0 \\ { - k_{1} } & 0 & 0 & {k_{2} + k_{3} } & { - k_{3} } & {\mu k_{c1} } & 0 & { - \mu k_{c1} } & 0 & 0 \\ 0 & { - k_{7} \sin^{2} \theta } & {k_{7} \sin \theta \cos \theta } & { - k_{3} } & {k_{3} + k_{4} + k_{7} \sin^{2} \theta } & 0 & { - k_{7} \sin \theta \cos \theta + \mu k_{c2} } & 0 & 0 & { - \mu k_{c2} } \\ 0 & 0 & { - k_{3} } & 0 & 0 & {k_{6} + k_{c1} } & 0 & 0 & { - k_{c1} } & 0 \\ 0 & {k_{7} \sin \theta \cos \theta } & { - k_{7} \cos^{2} \theta } & 0 & { - k_{7} \sin \theta \cos \theta } & 0 & {k_{7} \cos^{2} \theta + k_{c2} } & 0 & 0 & { - k_{c2} } \\ 0 & 0 & 0 & 0 & 0 & { - \mu k_{c1} } & { - \mu k_{c2} } & {k_{8} } & {\mu k_{c1} } & {\mu k_{c2} } \\ 0 & 0 & 0 & 0 & 0 & { - k_{c1} } & 0 & 0 & {k_{9,9} } & {k_{9,10} } \\ 0 & 0 & 0 & 0 & 0 & 0 & { - k_{c2} } & 0 & {k_{10,9} } & {k_{10,10} } \\ \end{array} } \right] $$

in which

\(k_{9,9} = k_{9} \left( {\frac{{l_{k1} + l_{c2} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{10} \left( {\frac{{l_{k2} - l_{c2} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{c1}\),

\(k_{9,10} = k_{10,9} = - \left[ {k_{9} \frac{{\left( {l_{k1} + l_{c2} } \right)\left( {l_{k1} - l_{c1} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }} + k_{10} \frac{{\left( {l_{k2} + l_{c1} } \right)\left( {l_{k2} - l_{c2} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} \right]\),

and \(k_{10,10} = k_{9} \left( {\frac{{l_{k1} - l_{c1} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{10} \left( {\frac{{l_{k2} + l_{c1} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{c2}\).

When the resulting equation of motion is rewritten as Eq. (15), and then, the elements in K related to the unilateral contact are removed, h in Eq. (15) can be obtained:

$$ {\mathbf{h}} = - \left\{ {\begin{array}{*{20}c} {\left( {k_{1} + k_{2} } \right)x_{1} - k_{2} x_{2} } \\ {\left( {k_{5} + k_{7} \sin^{2} \theta } \right)x_{4}^{{}} - k_{7} \sin \theta \cos \theta y_{4} - k_{7} \sin^{2} \theta x_{3} + k_{7} \sin \theta \cos \theta y_{3} } \\ { - k_{7} \sin \theta \cos \theta x_{4} + \left( {k_{6} + k_{8} + k_{7} \cos \theta^{2} } \right)y_{4} - k_{6} y_{2} + k_{7} \sin \theta \cos \theta x_{3} - k_{7} \cos \theta^{2} y_{3} - F_{n} } \\ { - k_{1} x_{1} + \left( {k_{2} + k_{3} } \right)x_{2} - k_{3} x_{3} } \\ { - k_{7} \sin^{2} \theta x_{4} + k_{7} \sin \theta \cos \theta y_{4} - k_{3} x_{2} + \left( {k_{3} + k_{4} + k_{7} \sin^{2} \theta } \right)x_{3} - k_{7} \sin \theta \cos \theta y_{3} } \\ {k_{3} y_{2} - k_{6} y_{4} } \\ {k_{7} \sin \theta \cos \theta x_{4} - k_{7} \cos^{2} \theta y_{4} - k_{7} \sin \theta \cos \theta x_{3} + k_{7} \cos^{2} \theta y_{3} } \\ {k_{8} x_{5} } \\ {\left[ {k_{9} \left( {\frac{{l_{k1} + l_{c2} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{10} \left( {\frac{{l_{k2} - l_{c2} }}{{l_{c1} + l_{c2} }}} \right)^{2} } \right]y_{5} - \left[ {k_{9} \frac{{\left( {l_{k1} + l_{c2} } \right)\left( {l_{k1} - l_{c1} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }} + k_{10} \frac{{\left( {l_{k2} + l_{c1} } \right)\left( {l_{k2} - l_{c2} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} \right]y_{6} } \\ { - \left[ {k_{9} \frac{{\left( {l_{k1} + l_{c2} } \right)\left( {l_{k1} - l_{c1} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }} + k_{10} \frac{{\left( {l_{k2} + l_{c1} } \right)\left( {l_{k2} - l_{c2} } \right)}}{{\left( {l_{c1} + l_{c2} } \right)^{2} }}} \right]y_{5} + \left[ {k_{9} \left( {\frac{{l_{k1} - l_{c1} }}{{l_{c1} + l_{c2} }}} \right)^{2} + k_{10} \left( {\frac{{l_{k2} + l_{c1} }}{{l_{c1} + l_{c2} }}} \right)^{2} } \right]y_{6} } \\ \end{array} } \right\} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ouyang, H., Gu, Y. et al. Non-stationary friction-induced vibration with multiple contact points. Nonlinear Dyn 111, 9889–9917 (2023). https://doi.org/10.1007/s11071-023-08321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08321-0

Keywords

Navigation