Skip to main content
Log in

Filtered low-power multi-high-gain observer design for a class of nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a high-gain observer (HGO) approach is used to design a nonlinear observer for nonlinear systems in canonical observer form. The design uses multiple low-power (LP) observers with low-pass filters that provide a state estimation approach as a weighted sum of the individual observer state variables. As for the typical HGO design, it is shown that the estimation error dynamics of the proposed observer are input-to-state stable (ISS) with regard to measurement noise with a tunable convergence rate. It is also demonstrated that the multiple LP observer yields a smaller bound on the estimation error than the HGO and LP. Finally, the steady-state behaviour of the observer is characterized. For the linear case, the observer improves the sensitivity of the state estimates to measurement noise. The effectiveness of the suggested approach is demonstrated for the identification of a robot arm for which the observer is used as a numerical differentiator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bernard, P., Andrieu, V., Astolfi, D.: Observer design for continuous-time dynamical systems. Ann. Rev. Control 53, 224–248 (2022). https://doi.org/10.1016/j.arcontrol.2021.11.002

    Article  MathSciNet  Google Scholar 

  2. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    Article  MathSciNet  Google Scholar 

  3. Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 44(9), 1672–1687 (1999)

    Article  MathSciNet  Google Scholar 

  4. Sussmann, H., Kokotovic, P.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. Autom. Control 36(4), 424–440 (1991)

    Article  MathSciNet  Google Scholar 

  5. Vasiljevic, L.K., Khalil, H.K.: Differentiation with high-gain observers the presence of measurement noise. In: Proceedings of the 45th IEEE Conference on Decision and Control, 4717–4722 (2006). IEEE

  6. Ibrir, S., Diop, S.: On continuous time differentiation observers. In: 1999 European Control Conference (ECC), 2402–2406 (1999). IEEE

  7. Chitour, Y.: Time-varying high-gain observers for numerical differentiation. IEEE Trans. Autom. Control 47(9), 1565–1569 (2002)

    Article  MathSciNet  Google Scholar 

  8. Mousavi, S.M., Guay, M.: A peaking free time-varying high-gain observer with reduced sensitivity to measurement noise. IEEE Control Syst. Lett. 7, 2857–2862 (2023). https://doi.org/10.1109/LCSYS.2023.3290045

    Article  MathSciNet  Google Scholar 

  9. Ibrir, S.: New differentiators for control and observation applications. In: Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148), 3, 2522–2527 (2001). IEEE

  10. Ibrir, S.: Linear time-derivative trackers. Automatica 40(3), 397–405 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ahrens, J.H., Khalil, H.K.: High-gain observers in the presence of measurement noise: A switched-gain approach. Automatica 45(4), 936–943 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kadrine, A., Tir, Z., Malik, O.P., Hamida, M.A., Reatti, A., Houari, A.: Adaptive non-linear high gain observer based sensorless speed estimation of an induction motor. J. Frankl. Inst. 357(13), 8995–9024 (2020). https://doi.org/10.1016/j.jfranklin.2020.06.013

    Article  MathSciNet  Google Scholar 

  13. Andrieu, V., Prieur, C., Tarbouriech, S., Zaccarian, L.: A hybrid scheme for reducing peaking in high-gain observers for a class of nonlinear systems. Automatica 72, 138–146 (2016). https://doi.org/10.1016/j.automatica.2016.06.013

    Article  MathSciNet  Google Scholar 

  14. Bernat, J., Stepien, S.: Multi-modelling as new estimation schema for high-gain observers. Int. J. Control 88(6), 1209–1222 (2015)

    Article  MathSciNet  Google Scholar 

  15. Shakarami, M., Esfandiari, K., Suratgar, A.A., Talebi, H.A.: On the peaking attenuation and transient response improvement of high-gain observers. In: 2018 IEEE Conference on Decision and Control (CDC), 577–582 (2018). IEEE

  16. Esfandiari, K., Shakarami, M.: Bank of high-gain observers in output feedback control: Robustness analysis against measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2476–2487 (2019)

    Article  Google Scholar 

  17. Shakarami, M., Esfandiari, K., Suratgar, A.A., Talebi, H.A.: Peaking attenuation of high-gain observers using adaptive techniques: state estimation and feedback control. IEEE Trans. Autom. Control 65(10), 4215–4229 (2020)

    Article  MathSciNet  Google Scholar 

  18. Astolfi, D., Marconi, L., Praly, L., Teel, A.: Sensitivity to high-frequency measurement noise of nonlinear high-gain observers. IFAC-PapersOnLine 49(18), 862–866 (2016)

    Article  Google Scholar 

  19. Astolfi, D., Marconi, L.: A high-gain nonlinear observer with limited gain power. IEEE Trans. Autom. Control 60(11), 3059–3064 (2015)

    Article  MathSciNet  Google Scholar 

  20. Astolfi, D., Marconi, L., Teel, A.: Low-power peaking-free high-gain observers for nonlinear systems. In: 2016 European Control Conference (ECC), 1424–1429 (2016). IEEE

  21. Astolfi, D., Marconi, L., Praly, L., Teel, A.R.: Low-power peaking-free high-gain observers. Automatica 98, 169–179 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ran, M., Li, J., Xie, L.: A new extended state observer for uncertain nonlinear systems. Automatica 131, 109772 (2021). https://doi.org/10.1016/j.automatica.2021.109772

    Article  MathSciNet  Google Scholar 

  23. Wang, S.: Adaptive robust asymptotic tracking control of nonaffine nonlinear systems. Int. J. Robust Nonlinear Control 33(1), 559–573 (2023)

    Article  MathSciNet  Google Scholar 

  24. Khalil, H.K., Priess, S.: Analysis of the use of low-pass filters with high-gain observers. IFAC PapersOnLine 49(18), 488–492 (2016)

    Article  Google Scholar 

  25. Tréangle, C., Farza, M., M’Saad, M.: Filtered high gain observer for a class of uncertain nonlinear systems with sampled outputs. Automatica 101, 197–206 (2019)

    Article  MathSciNet  Google Scholar 

  26. Astolfi, D., Zaccarian, L., Jungers, M.: On the use of low-pass filters in high-gain observers. Syst. Control Lett. 148, 104856 (2021)

    Article  MathSciNet  Google Scholar 

  27. Astolfi, D., Bernard, P., Postoyan, R., Marconi, L.: Constrained state estimation for nonlinear systems: A redesign approach based on convexity. IEEE Trans. Autom. Control 67(2), 824–839 (2022). https://doi.org/10.1109/TAC.2021.3064537

    Article  MathSciNet  Google Scholar 

  28. Mousavi, S., Guay, M.: A low-power multi high-gain observer design for state estimation in nonlinear systems. In: 2021 60th IEEE Conference on Decision and Control (CDC), 5435–5440 (2021). IEEE

  29. Gauthier, J.-P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  30. Goncharov, O.: Observer design for bilinear systems of a special form. Diff. Eq. 48, 1596–1606 (2012)

  31. Reza-Rahmati, M., Flores, G.: A nonlinear observer for bilinear systems in block form. Eur. J. Control 70, 100780 (2023)

    Article  MathSciNet  Google Scholar 

  32. QuanserInc.: Quanser’s QArm User Manuals

  33. Taati, B., Tahmasebi, A.M., Hashtrudi-Zaad, K.: Experimental identification and analysis of the dynamics of a phantom premium 1.5 a haptic device. Presence 17(4), 327–343 (2008)

    Article  Google Scholar 

  34. Hsu, P., Bodson, M., Sastry, S., Paden, B.: Adaptive identification and control for manipulators without using joint accelerations. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, 4, 1210–1215 (1987). IEEE

  35. Mousavi, S., Guay, M.: Noise sensitivity reduction in low-power multi high gain observers using low-pass filters. In: 12th IFAC Symposium on Nonlinear Control Systems (2023)

Download references

Acknowledgements

Not applicable

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Guay.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Regressor dynamics

Appendix A Regressor dynamics

The regressor used in (43) has the following dynamics. Note that the remainder of the arrays not listed below are zero. Also, \(\varvec{c}_i,\varvec{s}_i, \varvec{c}_{ij},\varvec{s}_{ij}\) indicate the abbreviated form of \(\cos (\Theta _i)\), \(\sin (\Theta _i)\), \(\cos (\Theta _i+\Theta _j)\), \(\sin (\Theta _i+\Theta _j)\), respectively.

$$\begin{aligned}&\varvec{{\textbf {Y}}}(1,1)=\ddot{\Theta }_1\\&\varvec{{\textbf {Y}}}(1,2)=\varvec{c}_2^2\ddot{\Theta }_1-2\varvec{s}_2\varvec{c}_2\dot{\Theta }_1\dot{\Theta }_2\\&\varvec{{\textbf {Y}}}(1,3)=\varvec{s}_2^2\ddot{\Theta }_1+2\varvec{s}_2\varvec{c}_2\dot{\Theta }_1\dot{\Theta }_2\\&\varvec{{\textbf {Y}}}(1,4)=\varvec{s}_{23}^2\ddot{\Theta }_1+2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_2 +2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,5)=\varvec{c}_{23}^2\ddot{\Theta }_1-2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_2 -2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,6)=-2\varvec{c}_2\varvec{s}_{23}\ddot{\Theta }_1+2(\varvec{s}_2\varvec{s}_{23}\\&\qquad \qquad \quad -\varvec{c}_2\varvec{c}_{23}) \dot{\Theta }_1\dot{\Theta }_2 -2\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,7)=\varvec{c}_{23}^2\ddot{\Theta }_1-\varvec{c}_{23}\ddot{\Theta }_4-2\varvec{s}_{23}\varvec{c}_{23} \dot{\Theta }_1\dot{\Theta }_2\\&\qquad \qquad \quad -2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3 + \varvec{s}_{23}(\dot{\Theta }_2\dot{\Theta }_4 +\dot{\Theta }_3 \dot{\Theta }_4)\\&\varvec{{\textbf {Y}}}(1,8)=-2\varvec{c}_2\varvec{s}_{23}\ddot{\Theta }_1+2(\varvec{s}_2\varvec{s}_{23}\\&\qquad \qquad \quad -\varvec{c}_2\varvec{c}_{23}) \dot{\Theta }_1\dot{\Theta }_2 -2\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,9)=\varvec{s}_{23}^2\ddot{\Theta }_1+2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_2 +2\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,10)=-2\varvec{c}_2\varvec{s}_{23}\ddot{\Theta }_1+2(\varvec{s}_2\varvec{s}_{23}\\&\qquad \qquad \quad -\varvec{c}_2\varvec{c}_{23}) \dot{\Theta }_1\dot{\Theta }_2 -2\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(1,13)=\text {sign}(\dot{\Theta }_1)\\&\varvec{{\textbf {Y}}}(1,17)=\dot{\Theta }_1\\&\varvec{{\textbf {Y}}}(2,2)=\ddot{\Theta }_2+\varvec{s}_2\varvec{c}_2\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(2,3)=-\varvec{s}_2\varvec{c}_2\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(2,4)=\ddot{\Theta }_2+\ddot{\Theta }_3-\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(2,5)=\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(2,6)=-2\varvec{s}_3\ddot{\Theta }_2-(\varvec{s}_2\varvec{s}_{23}\\&\qquad \qquad \quad -\varvec{c}_2\varvec{c}_{23})\dot{\Theta }_1^2 -\varvec{c}_3\dot{\Theta }_3^2 -2\varvec{c}_3\dot{\Theta }_2\dot{\Theta }_3-\varvec{s}_3\ddot{\Theta }_3\\&\varvec{{\textbf {Y}}}(2,7)=\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2-\varvec{s}_{23}\dot{\Theta }_1\dot{\Theta }_4\\&\varvec{{\textbf {Y}}}(2,8)=2\ddot{\Theta }_2-\varvec{s}_3\ddot{\Theta }_3-(\varvec{s}_2\varvec{s}_{23}-\varvec{c}_2\varvec{c}_{23}) \dot{\Theta }_1^2-\varvec{c}_3\dot{\Theta }_3^2\\&\varvec{{\textbf {Y}}}(2,9)=\ddot{\Theta }_2-\ddot{\Theta }_3-\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(2,10)=-2\varvec{s}_3\ddot{\Theta }_2+\varvec{s}_3\ddot{\Theta }_3-(\varvec{s}_2\varvec{s}_{23} -\varvec{c}_2\varvec{c}_{23})\dot{\Theta }_1^2 \\&\qquad \qquad \quad +\varvec{c}_3\dot{\Theta }_3^2-2\varvec{c}_3\dot{\Theta }_2\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(2,11)=-\varvec{c}_2\\&\varvec{{\textbf {Y}}}(2,12)=\varvec{s}_{23}\\&\varvec{{\textbf {Y}}}(2,14)=\text {sign}(\dot{\Theta }_2)\\&\varvec{{\textbf {Y}}}(2,18)=\dot{\Theta }_2\\&\varvec{{\textbf {Y}}}(3,4)=\ddot{\Theta }_2+\ddot{\Theta }_3-\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(3,5)=\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(3,6)=-\varvec{s}_3\ddot{\Theta }_2+\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1^2+\varvec{c}_3\dot{\Theta }_2^2\\&\varvec{{\textbf {Y}}}(3,7)=\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2-\varvec{s}_{23}\dot{\Theta }_1\dot{\Theta }_4\\&\varvec{{\textbf {Y}}}(3,8)=-\varvec{s}_3\ddot{\Theta }_2+\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(3,9)=-\ddot{\Theta }_2+\ddot{\Theta }_3-\varvec{s}_{23}\varvec{c}_{23}\dot{\Theta }_1^2\\&\varvec{{\textbf {Y}}}(3,10)=\varvec{s}_3\ddot{\Theta }_2+\varvec{c}_2\varvec{c}_{23}\dot{\Theta }_1^2+\varvec{c}_3\dot{\Theta }_2^2\\&\varvec{{\textbf {Y}}}(3,12)=\varvec{s}_{23}\\&\varvec{{\textbf {Y}}}(3,15)=\text {sign}(\dot{\Theta }_3)\\&\varvec{{\textbf {Y}}}(3,19)=\dot{\Theta }_3\\&\varvec{{\textbf {Y}}}(4,7)=-\varvec{c}_{23}\ddot{\Theta }_1+\ddot{\Theta }_4+\varvec{s}_{23} (\dot{\Theta }_1\dot{\Theta }_2+\dot{\Theta }_1\dot{\Theta }_3)\\&\varvec{{\textbf {Y}}}(4,16)=\text {sign}(\dot{\Theta }_4)\\&\varvec{{\textbf {Y}}}(4,20)=\dot{\Theta }_4 \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Guay, M. Filtered low-power multi-high-gain observer design for a class of nonlinear systems. Nonlinear Dyn 112, 2745–2762 (2024). https://doi.org/10.1007/s11071-023-09205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09205-z

Keywords

Navigation