Skip to main content
Log in

Integration of nonlinear observer and unscented Kalman filter for pose estimation in autonomous truck–trailer and container truck

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces a new approach to state estimation called nonlinear observer-unscented Kalman filter (NLO-UKF). The proposed method is designed to improve the accuracy of state estimation in complex systems that are subject to nonlinearity and uncertainty. The key idea of the NLO-UKF is to use a nonlinear observer to correct the projected sigma points based on a measurement, and then update the mean and covariance using the UKF. The paper provides a detailed description of the NLO-UKF algorithm and demonstrates its boundedness. The use of NLO-UKF for pose estimation is presented to compare the effectiveness of the proposed method with other state estimation methods in the simulation of an autonomous truck–trailer system and experimentation with a container truck system. The NLO-UKF demonstrates improved accuracy during steady-state estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availabilty

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mikhail, M., Ouali, M.-S., Yacout, S.: A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies. Reliab. Eng. Syst. Saf. 241, 109668 (2024). https://doi.org/10.1016/j.ress.2023.109668

    Article  Google Scholar 

  2. Shao, X., Cai, B., Liu, Y., Zhang, J., Sui, Z., Feng, Q.: Remaining useful life prediction via a hybrid DBN-KF-based method: a case of subsea Christmas tree valves. Reliab. Eng. Syst. Saf. 238, 109405 (2023). https://doi.org/10.1016/j.ress.2023.109405

    Article  Google Scholar 

  3. Zhang, W., Wang, Z., Raïssi, T., Su, R.: An ellipsoid-based framework for fault estimation and remaining useful life prognosis. Int. J. Robust Nonlinear Control 33(12), 7260–7281 (2023). https://doi.org/10.1002/rnc.6749

    Article  MathSciNet  Google Scholar 

  4. Eaty, N.D.K.M., Bagade, P.: Digital twin for electric vehicle battery management with incremental learning. Expert Syst. Appl. 229, 120444 (2023). https://doi.org/10.1016/j.eswa.2023.120444

    Article  Google Scholar 

  5. Bhagavathi, R., Kufoalor, D.K.M., Hasan, A.: Digital twin-driven fault diagnosis for autonomous surface vehicles. IEEE Access 11, 41096–41104 (2023). https://doi.org/10.1109/ACCESS.2023.3268711

    Article  Google Scholar 

  6. Hasan, A., Widyotriatmo, A., Fagerhaug, E., Osen, O.: Predictive digital twins for autonomous surface vessels. Ocean Eng. 288, 116046 (2023). https://doi.org/10.1016/j.oceaneng.2023.116046

    Article  Google Scholar 

  7. Ye, J., Zhang, Z., Jin, J., Su, R., Huang, B.: Estimation of tire-road friction coefficient with adaptive tire stiffness based on RC-SCKF. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-09088-0

    Article  Google Scholar 

  8. Zhang, X., Kong, H., Man, Z.: Generalized adaptive gain sliding mode observer for uncertain nonlinear systems. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-09000-w

    Article  Google Scholar 

  9. Zhao, X., Sun, B., Zhang, W., He, X., Ma, S., Zhang, J., Liu, X.: Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries. Appl. Energy 353, 121992 (2024). https://doi.org/10.1016/j.apenergy.2023.121992

    Article  Google Scholar 

  10. May, M.P., Henning, K.-U., Sawodny, O.: Experimental validation of sensor fault estimation for vehicle dynamics with a nonlinear tire model. Control Eng. Pract. 141, 105725 (2023). https://doi.org/10.1016/j.conengprac.2023.105725

    Article  Google Scholar 

  11. Du, Y., Huang, P., Cheng, Y., Fan, Y., Yuan, Y.: Fault tolerant control of a quadrotor unmanned aerial vehicle based on active disturbance rejection control and two-stage Kalman filter. IEEE Access 11, 67556–67566 (2023). https://doi.org/10.1109/ACCESS.2023.3291409

    Article  Google Scholar 

  12. Zhao, X., Liu, L., Basin, M.V., Fei, Z.: Event-triggered reverse attacks on remote state estimation. IEEE Trans. Autom. Control (2023). https://doi.org/10.1109/TAC.2023.3273811

    Article  Google Scholar 

  13. Tummala, A.S.L.V., Inapakurthi, R.K.: A two-stage Kalman filter for cyber-attack detection in automatic generation control system. J. Mod. Power Syst. Clean Energy 10(1), 50–59 (2022). https://doi.org/10.35833/MPCE.2019.000119

    Article  Google Scholar 

  14. Mohammadzadeh, A., Tavassoli, B., Moaveni, B.: Simultaneous estimation of state and packet-loss occurrences in networked control systems. ISA Trans. 107, 307–315 (2020). https://doi.org/10.1016/j.isatra.2020.08.006

    Article  Google Scholar 

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: Proceedings Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, SPIE (1997)

  17. Agarwal, M., Bonvin, D.: Limitations of the extended Kalman filter for batch reactors. IFAC Proc. Vol. 22(8), 299–306 (1989)

    Article  Google Scholar 

  18. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158 (2000). https://doi.org/10.1109/ASSPCC.2000.882463

  19. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: Analysis and improvement of the consistency of extended kalman filter based slam. In: 2008 IEEE International Conference on Robotics and Automation, pp. 473–479 (2008). https://doi.org/10.1109/ROBOT.2008.4543252

  20. Zhang, X., He, J., Hua, X., Chen, Z., Yang, O.: Online identification of time-variant structural parameters under unknown inputs basing on extended Kalman filter. Nonlinear Dyn. 109, 963–974 (2022). https://doi.org/10.1007/s11071-022-07493-5

    Article  Google Scholar 

  21. Feudo, S.L., Dion, J.-L., Franck Renaud, G.K., Noël, J.-P.: Video analysis of nonlinear systems with extended Kalman filtering for modal identification. Nonlinear Dyn. 111, 13263–13277 (2023). https://doi.org/10.1007/s11071-023-08560-1

    Article  Google Scholar 

  22. Pyrhonen, L., Jaiswal, S., Mikkola, A.: Mass estimation of a simple hydraulic crane using discrete extended Kalman filter and inverse dynamics for online identification. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08946-1

    Article  Google Scholar 

  23. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003). https://doi.org/10.1007/s10236-003-0036-9

    Article  Google Scholar 

  24. Liu, F., Nie, X., Wu, A., Zhao, Z., Ma, C., Ning, L., Zhu, Y., Wang, L., Guo, X., Li, X.: Data assimilation method for improving the global spatiotemporal predictions of epidemic dynamics yielded by an ensemble Kalman filter and metropolis-hastings sampling. Nonlinear Dyn. 111, 15573–15589 (2023). https://doi.org/10.1007/s11071-023-08632-2

    Article  Google Scholar 

  25. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158 (2000). https://doi.org/10.1109/ASSPCC.2000.882463

  26. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158 (2000). https://doi.org/10.1109/ASSPCC.2000.882463

  27. Liu, F., Liu, Y., Sun, X., Sang, H.: A new multi-sensor hierarchical data fusion algorithm based on unscented Kalman filter for the attitude observation of the wave glider. Appl. Ocean Res. 109, 102562 (2021). https://doi.org/10.1016/j.apor.2021.102562

    Article  Google Scholar 

  28. Jung, K., Kim, J., Kim, J., Jung, E., Kim, S.: Positioning accuracy improvement of laser navigation using UKF and FIS. Robot. Auton. Syst. 62(9), 1241–1247 (2014). https://doi.org/10.1016/j.robot.2014.03.016

    Article  Google Scholar 

  29. Radhakrishnan, R., Yadav, A., Date, P., Bhaumik, S.: A new method for generating sigma points and weights for nonlinear filtering. IEEE Control Syst. Lett. 2(3), 519–524 (2018). https://doi.org/10.1109/LCSYS.2018.2843184

    Article  MathSciNet  Google Scholar 

  30. Zhou, W., Hou, J.: A new adaptive high-order unscented Kalman filter for improving the accuracy and robustness of target tracking. IEEE Access 7, 118484–118497 (2019). https://doi.org/10.1109/ACCESS.2019.2936879

    Article  Google Scholar 

  31. Meng, D., Miao, L., Shao, H., Shen, J.: A seventh-degree cubature Kalman filter. Asian J Control 20(1), 250–262 (2018). https://doi.org/10.1002/asjc.1537

    Article  MathSciNet  Google Scholar 

  32. Mangiacapra, G., Wittal, M., Capello, E., Nazari, M.: Unscented Kalman filter and control on \({ TSE(3)}\) with application to spacecraft dynamics. Nonlinear Dyn. 108, 2127 (2022). https://doi.org/10.1007/s11071-022-07293-x

    Article  Google Scholar 

  33. Sanila, P., Pradeep, A., Jacob, J., Ramchand, R.: Leader–follower target interception control of multi-robotic vehicles with holonomic dynamics based on unscented Kalman filter. Nonlinear Dyn. 111, 11171–11190 (2023). https://doi.org/10.1007/s11071-023-08436-4

    Article  Google Scholar 

  34. Gu, N., Peng, Z., Wang, D., Liu, L., Jiang, Y.: Nonlinear observer design for a robotic unmanned surface vehicle with experiment results. Appl. Ocean Res. 95, 102028 (2020). https://doi.org/10.1016/j.apor.2019.102028

    Article  Google Scholar 

  35. Jeon, W., Zemouche, A., Rajamani, R.: Nonlinear observer for vehicle motion tracking. In: 2018 Annual American Control Conference (ACC), pp. 1–4 (2018). https://doi.org/10.23919/ACC.2018.8431372

  36. Vik, B., Fossen, T.I.: A nonlinear observer for GPS and INS integration. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 3, pp. 2956–29613 (2001). https://doi.org/10.1109/CDC.2001.980726

  37. Mahony, R., Hamel, T., Pflimlin, J.-M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008). https://doi.org/10.1109/TAC.2008.923738

    Article  MathSciNet  Google Scholar 

  38. Vasconcelos, J.F., Cunha, R., Silvestre, C., Oliveira, P.: Landmark based nonlinear observer for rigid body attitude and position estimation. In: 2007 46th IEEE Conference on Decision and Control, pp. 1033–1038 (2007). https://doi.org/10.1109/CDC.2007.4434417

  39. Grip, H.F., Fossero, T.I., Johansent, T.A., Saberi, A.: A nonlinear observer for integration of GNSS and IMU measurements with gyro bias estimation. In: 2012 American Control Conference (ACC), pp. 4607–4612 (2012). https://doi.org/10.1109/ACC.2012.6314929

  40. Zhang, B., Peng, Z., Wang, D., Gu, N., Liu, L., Ren, S.: Nonlinear observer design for a robotic unmanned surface vehicle using GPS and IMU measurements with experimental results. In: 2018 Eighth International Conference on Information Science and Technology (ICIST), pp. 262–267 (2018). https://doi.org/10.1109/ICIST.2018.8426137

  41. Zhang, X., Kong, H., Man, Z.: Generalized adaptive gain sliding mode observer for uncertain nonlinear systems. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-09000-w

    Article  Google Scholar 

  42. Yang, X., Shan, Q., Li, T., Chen, C.L.P.: Observer-based fuzzy fault-tolerant control for nonlinear systems in the presence of general noise. Nonlinear Dyn. 110, 2447–2464 (2022). https://doi.org/10.1007/s11071-022-07745-4

    Article  Google Scholar 

  43. Li, Y., Yuan, M., Chadli, M., Zhao, D., Wang, Y., Liu, S.: Codesign of adaptive event generator and nonfragile observer for nonlinear systems with bounded disturbances based on interval type-2 t-s fuzzy models. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-09066-6

    Article  Google Scholar 

  44. Zhai, J., Wang, H., Tao, J., He, Z.: Observer-based adaptive fuzzy finite time control for non-strict feedback nonlinear systems with unmodeled dynamics and input delay. Nonlinear Dyn. 111, 1417–1440 (2023). https://doi.org/10.1007/s11071-022-07913-6

    Article  Google Scholar 

  45. Xu, Z., Xie, N., Shen, H., Hu, X., Liu, Q.: Extended state observer-based adaptive prescribed performance control for a class of nonlinear systems with full-state constraints and uncertainties. Nonlinear Dyn. 105, 345–358 (2021). https://doi.org/10.1007/s11071-021-06564-3

    Article  Google Scholar 

  46. He, Y., Wu, Y., Li, W.: Nonlinear extended state observer-based adaptive higher-order sliding mode control for parallel antenna platform with input saturation. Nonlinear Dyn. 111, 16111–16132 (2023). https://doi.org/10.1007/s11071-023-08701-6

    Article  Google Scholar 

  47. Yang, M., Wang, Z., Yu, D., Wang, Z., Liu, Y.-J.: Extended state observer-based non-singular practical fixed-time adaptive consensus control of nonlinear multi-agent systems. Nonlinear Dyn. 111, 10097–10111 (2023). https://doi.org/10.1007/s11071-023-08352-7

    Article  Google Scholar 

  48. Ma, L., Wang, M.: State estimation of nonlinear time-varying complex networks with time-varying sensor delay for unknown noise distributions. Commun. Nonlinear Sci. Numer. Simul. 114, 106594 (2022). https://doi.org/10.1016/j.cnsns.2022.106594

    Article  MathSciNet  Google Scholar 

  49. Sharifian, M.S., Rahimi, A., Pariz, N.: Classifying the weights of particle filters in nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 31(1), 69–75 (2016). https://doi.org/10.1016/j.cnsns.2015.05.021

    Article  Google Scholar 

  50. Zhang, Q.-b, Wang, P., Chen, Z.-h: An improved particle filter for mobile robot localization based on particle swarm optimization. Expert Syst. Appl. 135, 181–193 (2019). https://doi.org/10.1016/j.eswa.2019.06.006

    Article  Google Scholar 

  51. Shi, L.-F., Feng, B.-L., Dai, Y.-F., Liu, G.-X., Shi, Y.: Pedestrian indoor localization method based on integrated particle filter. IEEE Trans. Instrum. Meas. 72, 1–10 (2023). https://doi.org/10.1109/TIM.2023.3235426

    Article  Google Scholar 

  52. Michalski, J., Kozierski, P., Giernacki, W., Zietkiewicz, J., Retinger, M.: Multipdf particle filtering in state estimation of nonlinear objects. Nonlinear Dyn. 106, 2165–2182 (2021). https://doi.org/10.1007/s11071-021-06913-2

    Article  Google Scholar 

  53. Chen, J., Masdemont, J.J., Gómez, G., Yuan, J.: An efficient statistical adaptive order-switching methodology for Kalman filters. Commun. Nonlinear Sci. Numer. Simul. 93, 105539 (2021). https://doi.org/10.1016/j.cnsns.2020.105539

    Article  MathSciNet  Google Scholar 

  54. Johansen, T.A., Fossen, T.I.: The exogenous kalman filter (XKF). Int. J. Control 90(2), 161–167 (2017). https://doi.org/10.1080/00207179.2016.1172390

    Article  MathSciNet  Google Scholar 

  55. Hasan, A., Tahavori, M., Midtiby, H.S.: Model-based fault diagnosis algorithms for robotic systems. IEEE Access 11, 2250–2258 (2023). https://doi.org/10.1109/ACCESS.2022.3233672

    Article  Google Scholar 

  56. Jørgensen, E.K., Fossen, T.I., Bryne, T.H., Schjølberg, I.: Underwater position and attitude estimation using acoustic, inertial, and depth measurements. IEEE J. Ocean. Eng. 45(4), 1450–1465 (2020). https://doi.org/10.1109/JOE.2019.2933883

    Article  Google Scholar 

  57. Xu, H., Fossen, T.I., Guedes Soares, C.: Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path-following. Eur. J. Control. 53, 88–97 (2020). https://doi.org/10.1016/j.ejcon.2019.09.007

    Article  MathSciNet  Google Scholar 

  58. Hasan, A.: Adaptive exogenous Kalman filter for actuator fault diagnosis in robotics and autonomous systems. In: 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA), pp. 162–167 (2019). https://doi.org/10.1109/ICCMA46720.2019.8988724

  59. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158 (2000). https://doi.org/10.1109/ASSPCC.2000.882463

  60. Li, Z., Yang, W., Ding, D., Liao, Y.: A novel fifth-degree cubature Kalman filter for real-time orbit determination by radar. Math. Probl. Eng. 2017 (2017)

  61. Zhou, W., Hou, J.: A new adaptive high-order unscented Kalman filter for improving the accuracy and robustness of target tracking. IEEE Access 7, 118484–118497 (2019). https://doi.org/10.1109/ACCESS.2019.2936879

    Article  Google Scholar 

  62. Xiong, K., Zhang, H.Y., Chan, C.W.: Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2), 261–270 (2006). https://doi.org/10.1016/j.automatica.2005.10.004

    Article  MathSciNet  Google Scholar 

  63. Tarn, T.-J., Rasis, Y.: Observers for nonlinear stochastic systems. IEEE Trans. Autom. Control 21(4), 441–448 (1976). https://doi.org/10.1109/TAC.1976.1101300

    Article  MathSciNet  Google Scholar 

  64. Widyotriatmo, A., Nazaruddin, Y.Y., Putranto, M.R.F., Ardhi, R.: Forward and backward motions path following controls of a truck-trailer with references on the head-truck and on the trailer. ISA Trans. 105, 349–366 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by Institut Teknologi Bandung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augie Widyotriatmo.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Derivation of truck trailer model

The schematic of truck–trailer is shown in Fig. 2a. From Fig. 2, The dynamics at point (\(x_h\), \(y_h\)) that affect by the velocity v are obtained as

$$\begin{aligned} \dot{x}_h= & {} v \cos \theta _h \end{aligned}$$
(A1)
$$\begin{aligned} \dot{y}_h= & {} v \sin \theta _h. \end{aligned}$$
(A2)

Due to limitations in steering, wheel rotation, and the inability to move directly sideways in the kinematic of the head truck, the nonholonomic constraints are given by

$$\begin{aligned} \dot{x}_h \sin \theta _h - \dot{y}_h \cos \theta _h= & {} 0 \end{aligned}$$
(A3)
$$\begin{aligned} \dot{x}_f \sin (\theta _h + \delta ) - \dot{y}_f \cos (\theta _h + \delta )= & {} 0, \end{aligned}$$
(A4)

where \(x_f\) and \(y_f\) is the position of the front wheel and determined by

$$\begin{aligned} x_f= & {} x_h + l_h \cos \theta _h \end{aligned}$$
(A5)
$$\begin{aligned} y_f= & {} y_h + l_h \sin \theta _h. \end{aligned}$$
(A6)

The derivative of \(x_f\) and \(y_f\) are

$$\begin{aligned} \dot{x}_f= & {} \dot{x}_h + \dot{\theta }_h l_h \sin \theta _h \end{aligned}$$
(A7)
$$\begin{aligned} \dot{y}_f= & {} \dot{y}_h + \dot{\theta }_h l_h \cos \theta _h. \end{aligned}$$
(A8)

Substituting (A7) and (A8) to (A4) yields

$$\begin{aligned}{} & {} (\dot{x}_h + \dot{\theta }_h l_h \sin \theta _h) \sin (\theta _h + \delta ) - (\dot{y}_h + \dot{\theta }_h l_h \cos \theta _h) \nonumber \\{} & {} \qquad \cos (\theta _h + \delta ) = 0 \end{aligned}$$
(A9)
$$\begin{aligned}{} & {} \dot{x}_h \sin (\theta _h + \delta ) - \dot{y}_h \cos (\theta _h + \delta ) - \dot{\theta }_h l_h \cos \delta = 0. \nonumber \\ \end{aligned}$$
(A10)

Then, substitution of (A1) and (A2) into (A10) provides

$$\begin{aligned}{} & {} v \cos \theta _h \sin (\theta _h + \delta ) - v \sin \theta _h \cos (\theta _h + \delta ) \nonumber \\{} & {} - \dot{\theta }_h l_h \cos \delta = 0 \end{aligned}$$
(A11)
$$\begin{aligned}{} & {} v \sin \theta _h - \dot{\theta }_h l_h \cos \delta = 0.\nonumber \\ \end{aligned}$$
(A12)

Thus,

$$\begin{aligned} \dot{\theta }_h= & {} \frac{v \tan \delta }{l_h}. \end{aligned}$$
(A13)

The final result of the kinematic of the head truck is described by (A1), (A2), and (A13).

Next, we derive the kinematic of the trailer part based on Fig. 2a. The dynamic of the trailer at point (\(x_t\), \(y_t\)) that affect by the velocity v and the heading of the head truck is obtained as

$$\begin{aligned} \dot{x}_t= & {} v \cos (\theta _h - \theta _t) \cos \theta _t \end{aligned}$$
(A14)
$$\begin{aligned} \dot{y}_t= & {} v \cos (\theta _h - \theta _t) \sin \theta _t. \end{aligned}$$
(A15)

Nonholonomic constraints are existed at the trailer reference point (\(x_t\),\(y_t\)) and the hitch joint at point (\(x_h\),\(y_h\)) due to limitations in inability to move directly sideways. The nonholonomic constraints are given by

$$\begin{aligned} \dot{x}_h \sin \theta _h - \dot{y}_h \cos \theta _h= & {} 0 \end{aligned}$$
(A16)
$$\begin{aligned} \dot{x}_t \sin \theta _t - \dot{y}_t \cos \theta _t= & {} 0, \end{aligned}$$
(A17)

where \(x_h\) and \(y_h\) is described by

$$\begin{aligned} x_h= & {} x_t + l_t \cos \theta _t \end{aligned}$$
(A18)
$$\begin{aligned} y_h= & {} y_t + l_t \sin \theta _t, \end{aligned}$$
(A19)

and the derivation of \(x_h\) and \(y_h\) is calculated by

$$\begin{aligned} \dot{x}_h= & {} \dot{x}_t + \dot{\theta }_t l_t \sin \theta _t \end{aligned}$$
(A20)
$$\begin{aligned} \dot{y}_h= & {} \dot{y}_t + \dot{\theta }_t l_t \cos \theta _t. \end{aligned}$$
(A21)

Substituting (A20) and (A21) to (A16) yields

$$\begin{aligned} (\dot{x}_t + \dot{\theta }_t l_t \sin \theta _t) \sin \theta _h - (\dot{y}_t + \dot{\theta }_t l_t \cos \theta _t) \cos \theta _h= & {} 0 \nonumber \\\end{aligned}$$
(A22)
$$\begin{aligned} \dot{x}_t \sin \theta _h - \dot{y}_t \cos \theta _h - l_t \dot{\theta }_t \cos (\theta _h - \theta _t)= & {} 0. \nonumber \\ \end{aligned}$$
(A23)

Then, substitution of (A14) and (A15) to (A23) provides

$$\begin{aligned}{} & {} (v \cos (\theta _h - \theta _t) \cos \theta _t) \sin \theta _h\nonumber \\{} & {} - (v \cos (\theta _h - \theta _t) \sin \theta _t) \cos \theta _h \nonumber \\{} & {} \qquad - l_t \dot{\theta }_t \cos (\theta _h - \theta _t) = 0 \nonumber \\\end{aligned}$$
(A24)
$$\begin{aligned}{} & {} v \cos (\theta _h - \theta _t) \sin (\theta _h - \theta _t) - l_t \dot{\theta }_t \cos (\theta _h - \theta _t) = 0.\nonumber \\ \end{aligned}$$
(A25)

Thus,

$$\begin{aligned} \dot{\theta }_t= & {} \frac{v \sin (\theta _h - \theta _t)}{l_t}. \end{aligned}$$
(A26)

Finally, the kinematic of the trailer is determined by (A14), (A15) , and (A26).

Derivation of container truck model

The velocity of the container truck is on the same wheels as that used for steering as shown in Fig. 2b. From Fig. 2b, the dynamic of the container truck at point (\(x_c\), \(y_c\)) with velocity v and steering angle \(\delta \) is obtained as

$$\begin{aligned} \dot{x}_c= & {} v \cos \delta \cos \theta _c \end{aligned}$$
(B27)
$$\begin{aligned} \dot{y}_c= & {} v \cos \delta \sin \theta _c . \end{aligned}$$
(B28)

The container truck follows the nonholonomic constraint by following equations

$$\begin{aligned} \dot{x}_c \sin \theta _c - \dot{y}_c \cos \theta _c= & {} 0 \end{aligned}$$
(B29)
$$\begin{aligned} \dot{x}_s \sin (\theta _c + \delta ) - \dot{y}_s \cos (\theta _c + \delta )= & {} 0, \end{aligned}$$
(B30)

where \(x_s\) and \(y_s\) are determined by

$$\begin{aligned} x_s= & {} x_c + l_c \cos \theta _c \end{aligned}$$
(B31)
$$\begin{aligned} y_s= & {} y_c + l_c \sin \theta _c. \end{aligned}$$
(B32)

The derivatives of \(x_s\) and \(y_s\) are obtained as

$$\begin{aligned} \dot{x}_s= & {} \dot{x}_c + \dot{\theta }_c l_c \sin \theta _c \end{aligned}$$
(B33)
$$\begin{aligned} \dot{y}_s= & {} \dot{y}_c + \dot{\theta }_c l_c \cos \theta _c. \end{aligned}$$
(B34)

Substituting (B33) and (B34) to (B30) yields

$$\begin{aligned}{} & {} (\dot{x}_c + \dot{\theta }_c l_c \sin \theta _c) \sin (\theta _c + \delta ) - (\dot{y}_c + \dot{\theta }_c l_c \cos \theta _c) \nonumber \\{} & {} \qquad \cos (\theta _c + \delta ) = 0 \end{aligned}$$
(B35)
$$\begin{aligned}{} & {} \dot{x}_c \sin (\theta _c + \delta ) - \dot{y}_c \cos (\theta _c + \delta ) - \dot{\theta }_c l_c \cos \delta = 0. \nonumber \\ \end{aligned}$$
(B36)

Then, substitution of (B27) and (B28) to (B36) results

$$\begin{aligned}{} & {} (v \cos \delta \cos \theta _c) \sin (\theta _c + \delta ) - v \cos \delta \sin \theta _c \cos (\theta _c + \delta ) \nonumber \\{} & {} \qquad - \dot{\theta }_c l_c \cos \delta = 0. \end{aligned}$$
(B37)

Thus, we have

$$\begin{aligned} \dot{\theta }_c= & {} \frac{v sin\delta }{l_c}. \end{aligned}$$
(B38)

Finally, the kinematic of the container truck is defined by (B27), (B28) , and (B38).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuncara, I.A., Widyotriatmo, A., Hasan, A. et al. Integration of nonlinear observer and unscented Kalman filter for pose estimation in autonomous truck–trailer and container truck. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09658-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09658-w

Keywords

Mathematics Subject Classification

Navigation