Skip to main content
Log in

A hybrid linear dynamic absorber and nonlinear energy sink for broadband absorption of a circular ring

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear energy sinks (NES) have been shown to have broadband absorption for multiple modes. Furthermore, linear dynamic absorbers (LDA) often only operate effectively within located frequency ranges and are unable to achieve broadband absorption. Therefore, this manuscript first proposed using a hybrid LDA and NES to design the circular ring absorption system. Compared with LDA, broadband absorption could be achieved through configuring and tuning linear stiffness. Both the linear and nonlinear stiffnesses are introduced by adding vertical and horizontal springs. The linear and nonlinear stiffness effects on the circular ring absorption system are investigated simultaneously. The dynamic model of the circular ring absorption system with hybrid LDA and NES is constructed, and the approximate analytical solution is obtained using the harmonic balance analysis. The expressions of frequency response and force transmissibility are given, and the analytical results are verified numerically. By comparing the amplitude-frequency response curves of the circular ring with LDA only, NES only, and a hybrid LDA and NES, it is confirmed that a hybrid LDA and NES can better control the forced vibration of the circular ring absorption system. Hybrid LDA and NES were shown to suppress main resonance peaks of the circular ring absorption system, making the device resistant to misalignments. In a linear system, this can only be achieved by resonance matching, so a hybrid LDA and NES have the same effect as adding multiple linear absorbers. Some properties of damping, nonlinear stiffness, and mass ratios in a hybrid LDA and NES are investigated. These parameters determine the specific shape of the force transmissibility curve of the ring absorption system. It is found that a proper increase in the mass ratio of the hybrid LDA and NES can obtain a better vibration reduction effect; adjusting the damping ratio and nonlinear stiffness ratio of the hybrid LDA and NES can improve the vibration reduction effect to a certain extent. Based on the analysis of the parameters effects of hybrid LDA and NES on vibration control, the parameters of hybrid LDA and NES are compared. The analysis of the results demonstrates that by selecting reasonable damping, nonlinear stiffness, and mass ratios, the frequency band of the circular ring absorption system can be broadened. Finally, an experiment is performed to validate the correctness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315, 700–711 (2008). https://doi.org/10.1016/j.jsv.2007.12.019

    Article  Google Scholar 

  2. Kovacic, I.: On some performance characteristics of base excited vibration isolation systems with a purely nonlinear restoring force. Int. J. Non-Linear Mech. 65, 44–52 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.010

    Article  Google Scholar 

  3. Wu, W.L., Tang, B.: An approximate method for solving force and displacement transmis-sibility of a geometrically nonlinear isolation system. Int. J. Non-Linear Mech. 125, 103512 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103512

    Article  Google Scholar 

  4. Wu, W.L., Tang, B., Yang, J.: The elliptic harmonic balance method for the performance analysis of a two-stage vibration isolation system with geometric nonlinearity. Shock Vib. 2021, 1–14 (2021). https://doi.org/10.1155/2021/6690686

    Article  Google Scholar 

  5. Liu, Q.H., Hou, Z.H., Zhang, Y., Jing, X.J., Kerschen, G., Cao, J.Y.: Nonlinear restoring force identification of strongly nonlinear structures by displacement measurement. J. Vib. Acoust. 144, 1–29 (2022). https://doi.org/10.1115/1.4052334

    Article  Google Scholar 

  6. Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D.L., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020). https://doi.org/10.1007/s11071-020-05806-0

    Article  Google Scholar 

  7. Cao, H., Chang, Y.P., Zhou, J.X., Zhao, X.H., Lu, L., Chen, F., Wu, X.W., Yang, J.: High-efficiency vibration isolation for a three-phase power transformer by a quasi-zero-stiffness isolator. Shock Vib. 2021, 1–11 (2021). https://doi.org/10.1155/2021/5596064

  8. Chai, Y.Y., Jing, X.J., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107077

    Article  Google Scholar 

  9. Chai, Y.Y., Jing, X.J., Guo, Y.Q.: A compact x-shaped mechanism based 3-dof anti-vibration unit with enhanced tunable QZS property. Mech. Syst. Sig. Process. 168, 108651 (2022). https://doi.org/10.1016/j.ymssp.2021.108651

    Article  Google Scholar 

  10. Yan, B., Ling, P., Zhou, Y.L., Wu, C.Y., Zhang, W.M.: Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness. J. Vib. Acoust. 144, 021008 (2022). https://doi.org/10.1115/1.4051850

    Article  Google Scholar 

  11. Yan, B., Wang, Z.H., Ma, H.Y., Bao, H.H., Wang, K., Wu, C.Y.: A novel lever-type vibration isolator with eddy current damping. J. Sound Vib. 494, 115862 (2021). https://doi.org/10.1016/j.jsv.2020.115862

    Article  Google Scholar 

  12. Mao, X.Y., Ding, H., Chen, L.Q.: Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary. Sci. China Technol. Sci. 64, 1690–1704 (2021). https://doi.org/10.1007/s11431-020-1791-2

    Article  Google Scholar 

  13. Li, W.K., Wierschem, N.E., Li, X.H., Yang, T.J.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018). https://doi.org/10.1016/j.jsv.2018.08.057

    Article  Google Scholar 

  14. Wei, Y.M., Wei, S., Zhang, Q.L., Dong, X.J., Peng, Z.K., Zhang, W.M.: Targeted energy transfer of a parallel nonlinear energy sink. Appl. Math. Mech. 40, 621–630 (2019). https://doi.org/10.1007/s10483-019-2477-6

    Article  MathSciNet  Google Scholar 

  15. Chen, J.N., Zhang, W., Liu, J., Hu, W.H.: Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Appl. Math. Mech. 42, 1135–1154 (2021). https://doi.org/10.1007/s10483-021-2757-6

    Article  MathSciNet  Google Scholar 

  16. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011). https://doi.org/10.1016/j.jsv.2010.08.014

    Article  Google Scholar 

  17. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.004

    Article  Google Scholar 

  18. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018). https://doi.org/10.1016/j.jsv.2018.08.058

    Article  Google Scholar 

  19. Farid, M., Gendelman, O.V.: Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control 23, 373–388 (2016). https://doi.org/10.1177/1077546315578561

    Article  MathSciNet  Google Scholar 

  20. Aghayari, J., Bab, S., Safarpour, P., Rahi, A.: A novel modal vibration reduction of a disk-blades of a turbine using nonlinear energy sinks on the disk. Mech. Mach. Theory 155, 104048 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104048

    Article  Google Scholar 

  21. Zhang, Z., Ding, H., Zhang, Y.W., Chen, L.Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. 37, 387–401 (2021). https://doi.org/10.1007/s10409-021-01062-6

    Article  MathSciNet  Google Scholar 

  22. Dang, W.H., Liu, S.L., Chen, L.Q., Yang, T.Z.: A dual-stage inerter-enhanced nonlinear energy sink. Nonlinear Dyn. 111, 60016015 (2023). https://doi.org/10.1007/s11071-022-08183-y

    Article  Google Scholar 

  23. Roncen, T., Michon, G., Manet, V.: Design and experimental analysis of a pneumatic nonlinear energy sink. Mech. Syst. Signal Process. 190, 110088 (2023). https://doi.org/10.1016/j.ymssp.2022.110088

    Article  Google Scholar 

  24. Shen, Y.J., Sui, P., Wang, X.N.: Performance analysis and optimization of bimodal nonlinear energy sink. Nonlinear Dyn. 111, 16813–16830 (2023). https://doi.org/10.1007/s11071-023-08737-8

    Article  Google Scholar 

  25. Wang, Y.F., Kang, H.J., Cong, Y.Y., Guo, T.D., Fu, T.: Vibration suppression of a cable-stayed beam by a nonlinear energy sink. Nonlinear Dyn. 111, 14829–14849 (2023). https://doi.org/10.1007/s11071-023-08651-z

    Article  Google Scholar 

  26. Wang, T.Z., Ding, Q.: Targeted energy transfer analysis of a nonlinear oscillator coupled with bistable nonlinear energy sink based on nonlinear normal modes. J. Sound Vib. 556, 117727 (2023). https://doi.org/10.1016/j.jsv.2023.117727

    Article  Google Scholar 

  27. Dou, J.X., Yao, H.L., Li, H., Cao, Y.B., Liang, S.J.: Vibration suppression of multi-frequency excitation using cam-roller nonlinear energy sink. Nonlinear Dyn. 111, 11939–11964 (2023). https://doi.org/10.1007/s11071-023-08477-9

    Article  Google Scholar 

  28. Kim, S.Y., Lee, C.H.: Analysis and optimization of multiple tuned mass dampers with Coulomb dry friction. Eng. Struct. 209, 110011 (2020). https://doi.org/10.1016/j.engstruct.2019.110011

    Article  Google Scholar 

  29. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration absorber via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020). https://doi.org/10.1016/j.ymssp.2019.106490

    Article  Google Scholar 

  30. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness cor-rector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  31. Huang, X.C., Liu, X.T., Hua, H.X.: Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation. Int. J. Non-Linear Mech. 65, 32–43 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.011

    Article  Google Scholar 

  32. Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Non-linear Dyn. 92, 325–349 (2018). https://doi.org/10.1007/s11071-018-4058-8

    Article  Google Scholar 

  33. Shabani, B., Rad, S.G., Alijani, A., Darvizeh, A., Rajabiehfard, R.: Dynamic plastic behavior of single and nested rings under lateral impact. Thin-Walled Struct. 160, 107373 (2021). https://doi.org/10.1016/j.tws.2020.107373

    Article  Google Scholar 

  34. Kim, D., Chaudhuri, R.A.: Postbuckling of moderately thick imperfect rings under external pressure. J. Eng. Mech. 132, 1273–1276 (2006). https://doi.org/10.1061/(asce)0733-9399(2006)132:11(1273)

    Article  Google Scholar 

  35. Wu, B.S., Yu, Y.P., Li, Z.G.: Analytical approximations to large post-buckling deformation of elastic rings under uniform hydrostatic pressure. Int. J. Mech. Sci. 49, 661–668 (2007). https://doi.org/10.1016/j.ijmecsci.2006.11.003

    Article  Google Scholar 

  36. Wang, Y.G., Lin, W.H., Liu, N.: A homotopy perturbation-based method for large deflection of a cantilever beam under a terminal follower force. Int. J. Comput. Methods Eng. Sci. Mech. 13, 197–201 (2012). https://doi.org/10.1080/15502287.2012.660229

    Article  MathSciNet  Google Scholar 

  37. Chen, H., Cai, L.X.: Unified ring-compression model for determining tensile properties of tubular materials. Mater. Today Commun. 13, 210–220 (2017). https://doi.org/10.1016/j.mtcomm.2017.10.006

    Article  Google Scholar 

  38. Lacarbonara, W., Arena, A., Antman, S.S.: Flexural vibrations of nonlinearly elastic circular rings. Meccanica 50, 689–705 (2014). https://doi.org/10.1007/s11012-014-0038-3

    Article  MathSciNet  Google Scholar 

  39. Xu, G.H., Huang, H.W., Zhang, Y.Q.: Vibration of elastic functionally graded thick rings. Shock Vib. 2017, 1–7 (2017). https://doi.org/10.1155/2017/1803710

    Article  Google Scholar 

  40. Kodio, O., Goriely, A., Vella, D.: Dynamic buckling of an inextensible elastic ring: linear and nonlinear analyses. Phys. Rev. E. 101, 053002 (2020). https://doi.org/10.1103/PhysRevE.101.053002

    Article  MathSciNet  Google Scholar 

  41. Reddy, E.S., Rickford, W.B.: On the in-plane vibrations of a rotating ring with equi-spaced spokes. J. Sound Vib. 103, 533–544 (1985). https://doi.org/10.1016/s0022-460x(85)80021-3

    Article  Google Scholar 

  42. Cooley, C.G., Parker, R.G.: A review of planetary and epicyclic gear dynamics and vibrations research. Appl. Mech. Rev. 66, 040804 (2014). https://doi.org/10.1115/1.4027812

    Article  Google Scholar 

  43. Lopez, I., Blom, R.E.A., Roozen, N.B., Nijmeijer, H.: Modelling vibrations on deformed rolling tyres-a modal approach. J. Sound Vib. 307, 481–494 (2007). https://doi.org/10.1016/j.jsv.2007.05.056

    Article  Google Scholar 

  44. Zhang, D.S., Wang, S.Y., Liu, J.P.: Analytical prediction for free response of rotationally ring-shaped periodic structures. J. Vib. Acoust. 136, 041016 (2014). https://doi.org/10.1115/1.4027630

    Article  Google Scholar 

  45. Tang, L., Huang, D.S., Cao, R., He, H.: Vibration analysis of a multi-span rotating ring with ray tracing method. Wave Motion 52, 91–102 (2015). https://doi.org/10.1016/j.wavemoti.2014.09.003

    Article  MathSciNet  Google Scholar 

  46. Lacarbonara, W.: Nonlinear structural mechanics, Springer, New York (2013). https://doi.org/10.1007/978-1-4419-1276-3

  47. Luo, J., Wierschem, N.E., Fahnestock, L.A., Bergman, L.A., Spencer, B.F., Al-Shudeifat, M., McFarland, D.M., Quinn, D.D., Vakakis, A.F.: Realization of a strongly nonlinear vibration mitigation device using elastomeric bumpers. J. Eng. Mech. 140, 04014009 (2014). https://doi.org/10.1061/(asce)em.1943-7889.0000692

    Article  Google Scholar 

  48. Qiu, D.H., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140, 11404 (2018). https://doi.org/10.1115/1.4038304

    Article  Google Scholar 

  49. Dowell, E.H.: On the nonlinear flexural vibrations of rings. AIAA J. 5, 1508–1509 (1967). https://doi.org/10.2514/3.4236

    Article  Google Scholar 

  50. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D. 239, 640–653 (2010). https://doi.org/10.1016/j.physd.2010.01.019

    Article  Google Scholar 

  51. Lu, Z.Q., Liu, W.H., Ding, H., Chen, L.Q.: Energy transfer of an axially loaded beam with a parallel with a parallel-coupled nonlinear vibration isolator. J. Vib. Acoust 144, 051009 (2022). https://doi.org/10.1115/1.4054324

    Article  Google Scholar 

  52. Lu, Z.Q., Brennan, M.J., Chen, L.Q.: On the transmissibilities of nonlinear vibration isolation system. J. Sound Vib. 375, 28–37 (2016). https://doi.org/10.1016/j.jsv.2016.04.032

  53. Hao, R.B., Lu, Z.Q., Ding, H., Chen, L.Q.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108, 941–958 (2022). https://doi.org/10.1007/s11071-022-07243-7

    Article  Google Scholar 

  54. Boom, P.D., Zing, D.W.: Optimization of high-order diagonally-implicit Runge–Kutta methods. J. Comput. Phys. 371, 168–191 (2018). https://doi.org/10.1016/j.jcp.2018.05.020

  55. Liu, W.H., Lu, Z.Q., Hao, R.B., Ding, H., Chen, L.Q.: Transverse vibration of axially loaded beam with parallel-coupled nonlinear isolators. Mech. Syst. Signal Process. 188, 110008 (2023). https://doi.org/10.1016/j.ymssp.2022.110008

  56. Geng, X.F., Ding, H., Jing, X.J., Mao, X.Y., Wei, K.X., Chen, L.Q.: Dynamic design of a magnetic-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 185, 109813 (2023). https://doi.org/10.1016/j.ymssp.2022.109813

    Article  Google Scholar 

  57. Zhang, Z., Gao, Z.T., Fang, B., Zhang, Y.W.: Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks. Nonlinear Dyn. 109, 1259–1275 (2022). https://doi.org/10.1007/s11071-022-07490-8

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 12272210, 11872037 and 11872159) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Qi Lu.

Ethics declarations

Conflicts of interest

The authors represent that they do not have any kind of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Stability analysis

To analyze the stability of the harmonic solutions, the fundamental harmonic solution is rewritten as:

$$\begin{aligned}{} & {} \hat{x}_\mathrm{{a}}^{*}(\tau )=\cos (\Omega \tau ){{A}_{11}}(\tau )+\sin (\Omega \tau ){{A}_{21}}(\tau ) \end{aligned}$$
(A1a)
$$\begin{aligned}{} & {} q_\mathrm{{u}2}^{*}(\tau )=\cos (\Omega \tau ){{B}_{11}}(\tau )+\sin (\Omega \tau ){{B}_{21}}(\tau ) \end{aligned}$$
(A1b)
$$\begin{aligned}{} & {} q_\mathrm{{v}2}^{*}(\tau )=\cos (\Omega \tau ){{D}_{11}}(\tau )+\sin (\Omega \tau ){{D}_{21}}(\tau ) \end{aligned}$$
(A1c)

The first and second derivatives of (A1aA1c) versus \(\tau \) yield

$$\begin{aligned}{} & {} \hat{x}_{\text {a}}^{'*}(\tau )=\cos (\Omega \tau )({{\text {A}}^{'}}_{11}+\Omega {{A}_{21}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{\text {A}}^{'}}_{21}-\Omega {{A}_{11}}) \end{aligned}$$
(A2a)
$$\begin{aligned}{} & {} q_{u2}^{'*}(\tau )=\cos (\Omega \tau )({{B}^{'}}_{11}+\Omega {{B}_{21}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{B}^{'}}_{21}-\Omega {{B}_{11}}) \end{aligned}$$
(A2b)
$$\begin{aligned}{} & {} q_{\text {v}2}^{'*}(\tau )=\cos (\Omega \tau )({{D}^{'}}_{11}+\Omega {{D}_{21}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{D}^{'}}_{21}-\Omega {{D}_{11}}) \end{aligned}$$
(A2c)
$$\begin{aligned}{} & {} \hat{x}_{\text {a}}^{''*}(\tau )=\cos (\Omega \tau )({{\text {A}}^{''}}_{11}+2\Omega {{A}^{'}}_{21}-{{\Omega }^{2}}{{A}_{11}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{\text {A}}^{''}}_{21}-2\Omega {{A}^{'}}_{11}-{{\Omega }^{2}}{{A}_{21}}) \end{aligned}$$
(A2d)
$$\begin{aligned}{} & {} q_{u2}^{''*}(\tau )=\cos (\Omega \tau )({{B}^{''}}_{11}+2\Omega {{B}^{'}}_{21}-{{\Omega }^{2}}{{B}_{11}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{B}^{''}}_{21}-2\Omega {{B}^{'}}_{11}-{{\Omega }^{2}}{{B}_{21}}) \end{aligned}$$
(A2e)
$$\begin{aligned}{} & {} q_{\text {v}2}^{''*}(\tau )=\cos (\Omega \tau )({{D}^{''}}_{11}+2\Omega {{D}^{'}}_{21}-{{\Omega }^{2}}{{D}_{11}})\nonumber \\{} & {} \quad +\sin (\Omega \tau )({{D}^{''}}_{21}-2\Omega {{D}^{'}}_{11}-{{\Omega }^{2}}{{D}_{21}}) \end{aligned}$$
(A2f)

Substituting equations (A2a-A2f) into the equations (17a-17c) and equating the coefficients of and to zero, six differential-algebraic equations are obtained, in which the points of HBM are fixed ones.

$$\begin{aligned}{} & {} \begin{aligned}&\mu A_{11}^{''}+2\mu \Omega A_{21}^{'}-\mu {{\Omega }^{2}}A_{11}^{{}}\\&+F({{A}_{11}},{{A}_{21}},{{D}_{11}},{{D}_{21}},A_{11}^{'},A_{21}^{'},D_{11}^{'}, \\&D_{21}^{'},{{\zeta }_{\text {n}}},\gamma ,\varepsilon ,\mu ,\Omega )=0 \\ \end{aligned} \end{aligned}$$
(A3a)
$$\begin{aligned}{} & {} \begin{aligned}&\mu A_{21}^{''}-2\mu \Omega A_{11}^{'}-\mu {{\Omega }^{2}}{{A}_{21}}\\&+F({{A}_{11}},{{A}_{21}},{{D}_{11}},{{D}_{21}},A_{11}^{'},A_{21}^{'},D_{11}^{'}, \\&D_{21}^{'},{{\zeta }_{\text {n}}},\gamma ,\varepsilon ,\mu ,\Omega )=0 \\ \end{aligned} \end{aligned}$$
(A3b)
$$\begin{aligned}{} & {} \begin{aligned}&{{\mu }_{\text {r}}}B_{11}^{''}+2{{\mu }_{\text {r}}}\Omega B_{21}^{'}-{{\mu }_{\text {r}}}{{\Omega }^{2}}{{B}_{11}}\\&+F({{B}_{11}},{{B}_{21}},{{D}_{11}},{{D}_{21}},B_{11}^{'},B_{21}^{'},D_{11}^{'}, \\&D_{21}^{'},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r11}}},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r12}}},{{\zeta }_{1}},{{\mu }_{\text {r}}},\Omega )=0 \\ \end{aligned} \end{aligned}$$
(A3c)
$$\begin{aligned}{} & {} \begin{aligned}&{{\mu }_{\text {r}}}B_{21}^{''}-2{{\mu }_{\text {r}}}\Omega B_{11}^{'}-{{\mu }_{\text {r}}}{{\Omega }^{2}}{{B}_{21}}\\&+F({{B}_{11}},{{B}_{21}},{{D}_{11}},{{D}_{21}},B_{11}^{'},B_{21}^{'},D_{11}^{'}, \\&D_{21}^{'},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r}11}},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r}12}},{{\zeta }_{1}},{{\mu }_{\text {r}}},\Omega )=0 \\ \end{aligned} \end{aligned}$$
(A3d)
$$\begin{aligned}{} & {} \begin{aligned}&D_{11}^{''}+2\Omega D_{21}^{'}-{{\Omega }^{2}}{{D}_{11}}\\&+F({{A}_{11}},{{A}_{21}},{{B}_{11}},{{B}_{21}},{{D}_{11}}, {{D}_{21}},A_{11}^{'},A_{21}^{'},B_{11}^{'}, \\&B_{21}^{'},D_{11}^{'},D_{21}^{'},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r11}}},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r12}}},{{\zeta }_{\text {n}}},{{\zeta }_{2}},\mu ,\gamma ,\varepsilon ,\Omega )=0 \\ \end{aligned} \nonumber \\ \end{aligned}$$
(A3e)
$$\begin{aligned}{} & {} \begin{aligned}&D_{21}^{''}-2\Omega D_{11}^{'}-{{\Omega }^{2}}{{D}_{21}}\\&+F({{A}_{11}},{{A}_{21}},{{B}_{11}},{{B}_{21}},{{D}_{11}},{{D}_{21}},A_{11}^{'},A_{21}^{'},B_{11}^{'}, \\&B_{21}^{'},D_{11}^{'},D_{21}^{'},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r11}}},{{\overset{\wedge }{\mathop {k}}\,}_{\text {r}12}},{{\zeta }_{\text {n}}},{{\zeta }_{2}},\mu ,\gamma ,\varepsilon ,\Omega )=0 \\ \end{aligned} \nonumber \\ \end{aligned}$$
(A3f)

\(q_{u2}^{*}\), \(q_{v2}^{*}\) and \(x_{a}^{*}\) are HBM solutions, \(\Delta q_{u2}\), \(\Delta q_{v2}\) and \(\Delta x_{a}\) are the deviation values of HBM solution, so:

$$\begin{aligned} {{x}_{\text {a}}}= & {} x_{\text {a}}^{*}+\Delta {{x}_{\text {a}}} \end{aligned}$$
(A4a)
$$\begin{aligned} {{q}_{u2}}= & {} q_{u2}^{*}+\Delta {{q}_{u2}} \end{aligned}$$
(A4b)
$$\begin{aligned} {{q}_{v2}}= & {} q_{v2}^{*}+\Delta {{q}_{v2}} \end{aligned}$$
(A4c)

where

$$\begin{aligned} \Delta {{x}_{a}}= & {} \Delta {{A}_{11}}\cos (\Omega \tau )+\Delta {{A}_{21}}\sin (\Omega \tau ) \end{aligned}$$
(A5a)
$$\begin{aligned} \Delta {{q}_{u2}}= & {} \Delta {{B}_{11}}\cos (\Omega \tau )+\Delta {{B}_{21}}\sin (\Omega \tau ) \end{aligned}$$
(A5b)
$$\begin{aligned} \Delta {{q}_{\text {v}2}}= & {} \Delta {{D}_{11}}\cos (\Omega \tau )+\Delta {{D}_{21}}\sin (\Omega \tau ) \end{aligned}$$
(A5c)

The perturbation equation is obtained by linearizing six algebraic differential equations at fixed points

$$\begin{aligned} \textbf{M}_{1}{{\mathbf {\varphi }}^{\prime \prime }}+\textbf{C}_{1}{{\mathbf {\varphi }}^{\prime }}+\textbf{K }_{1}\varphi =0 \end{aligned}$$
(A6)

where \(\varphi =\left[ \begin{matrix} \Delta {{A}_{11}} \\ \Delta {{A}_{21}} \\ \Delta {{B}_{11}} \\ \Delta {{B}_{21}} \\ \Delta {{D}_{11}} \\ \Delta {{D}_{21}} \\ \end{matrix} \right] \),\({{\varphi }^{'}}=\left[ \begin{matrix} \Delta {{A}^{'}}_{11} \\ \Delta {{A}^{'}}_{21} \\ \Delta {{B}^{'}}_{11} \\ \Delta {{B}^{'}}_{21} \\ \Delta {{D}^{'}}_{11} \\ \Delta {{D}^{'}}_{21} \\ \end{matrix} \right] \),\({{\varphi }^{''}}=\left[ \begin{matrix} \Delta {{A}^{''}}_{11} \\ \Delta {{A}^{''}}_{21} \\ \Delta {{B}^{''}}_{11} \\ \Delta {{B}^{''}}_{21} \\ \Delta {{D}^{''}}_{11} \\ \Delta {{D}^{''}}_{21} \\ \end{matrix} \right] \), \(\textbf{M}_{1}=\left[ \begin{array}{cccccc} \mu &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \mu &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \mu _r &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \mu _r &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array}\right] \),

$$\begin{aligned} \textbf{C}_{1}= & {} \left[ \begin{matrix} 2\mu {{\zeta }_{n}} &{}\quad 2\mu \Omega &{}\quad 0 &{}\quad 0 &{}\quad 2\mu {{\zeta }_{n}} &{}\quad 0 \\ -2\mu \Omega &{}\quad 2\mu {{\zeta }_{n}} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2\mu {{\zeta }_{n}} \\ 0 &{}\quad 0 &{}\quad 2{{\mu }_{r}}{{\zeta }_{1}} &{}\quad 2{{\mu }_{r}}\Omega &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -2{{\mu }_{r}}\Omega &{}\quad 2{{\mu }_{r}}{{\zeta }_{1}} &{}\quad 0 &{}\quad 0 \\ -2\mu {{\zeta }_{n}} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 2\mu {{\zeta }_{n}}+2{{\zeta }_{2}} &{}\quad 2\Omega \\ 0 &{}\quad -2\mu {{\zeta }_{n}} &{}\quad 0 &{}\quad 0 &{}\quad -2\Omega &{}\quad 2\mu {{\zeta }_{n}}+2{{\zeta }_{2}} \\ \end{matrix} \right] ,\\ \end{aligned}$$
$$\begin{aligned} \textbf{K}_{1}= & {} \left[ \begin{matrix} {{K}_{11}} &{}\quad {{K}_{12}} &{}\quad {{K}_{13}} &{}\quad {{K}_{14}} &{}\quad {{K}_{15}} &{}\quad {{K}_{16}} \\ {{K}_{21}} &{}\quad {{K}_{22}} &{}\quad {{K}_{23}} &{}\quad {{K}_{24}} &{}\quad {{K}_{25}} &{}\quad {{K}_{26}} \\ {{K}_{31}} &{}\quad {{K}_{32}} &{}\quad {{K}_{33}} &{}\quad {{K}_{34}} &{}\quad {{K}_{35}} &{}\quad {{K}_{36}} \\ {{K}_{41}} &{}\quad {{K}_{42}} &{}\quad {{K}_{43}} &{}\quad {{K}_{44}} &{}\quad {{K}_{45}} &{}\quad {{K}_{46}} \\ {{K}_{51}} &{}\quad {{K}_{52}} &{}\quad {{K}_{53}} &{} \quad {{K}_{54}} &{}\quad {{K}_{55}} &{}\quad {{K}_{56}} \\ {{K}_{61}} &{}\quad {{K}_{62}} &{}\quad {{K}_{63}} &{}\quad {{K}_{64}} &{}\quad {{K}_{65}} &{}\quad {{K}_{66}} \\ \end{matrix} \right] \\ {{K}_{11}}= & {} \varepsilon -\mu {{\Omega }^{2}}+\frac{3}{4}\gamma (3D_{11}^{2}-2{{A}_{21}}{{D}_{21}}\\{} & {} +A_{21}^{2}+D_{21}^{2}+A_{11}^{2}-3{{A}_{11}}{{D}_{11}}),\\ {{K}_{12}}= & {} 2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma ({{D}_{11}}{{D}_{21}}-{{A}_{11}}{{D}_{21}}\\{} & {} +2{{A}_{11}}{{A}_{21}}-2{{A}_{21}}{{D}_{11}}),\\ {{K}_{13}}= & {} 0,\\ {{K}_{14}}= & {} 0,\\ {{K}_{15}}= & {} -\varepsilon +\frac{3}{2}\gamma \left( \frac{3}{2}{{A}_{11}}{{D}_{11}}+{{A}_{21}}{{D}_{21}}-\frac{1}{2}D_{11}^{2}\right. \\{} & {} \left. -\frac{1}{2}D_{21}^{2}-\frac{1}{2}A_{11}^{2}{{D}_{11}}-\frac{1}{2}A_{21}^{2}{{D}_{11}}\right) ,\\ {{K}_{16}}= & {} -2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma \left( {{A}_{11}}D_{21}^{2}\right. \\{} & {} \left. +2{{A}_{21}}{{D}_{11}}-{{D}_{11}}D_{21}^{2}-{{A}_{11}}{{A}_{21}}\right) ,\\ {{K}_{16}}= & {} -2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma \left( {{A}_{11}}D_{21}^{2}\right. \\{} & {} \left. +2{{A}_{21}}{{D}_{11}}-{{D}_{11}}D_{21}^{2}-{{A}_{11}}{{A}_{21}}\right) ,\\ {{K}_{22}}= & {} \varepsilon -\mu {{\Omega }^{2}}+\frac{3}{4}\gamma \left( A_{21}^{2}-3{{A}_{21}}{{D}_{21}}\right. \\{} & {} \left. +3D_{21}^{2}-2{{A}_{11}}{{D}_{11}}+A_{11}^{2}+D_{11}^{2}\right) ,\\ {{K}_{23}}= & {} 0,{{K}_{24}}=0,\\ {{K}_{25}}= & {} 2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma (2{{A}_{11}}{{D}_{21}}\\{} & {} -2{{A}_{11}}{{A}_{21}}+{{A}_{21}}{{D}_{11}}-{{D}_{11}}{{D}_{21}}),\\ {{K}_{26}}= & {} -\varepsilon +\frac{3}{4}\gamma (3{{A}_{21}}{{D}_{21}}\\{} & {} +2{{A}_{11}}{{D}_{11}}-D_{21}^{2}-3A_{21}^{2}-A_{11}^{2}-D_{11}^{2}),\\ {{K}_{31}}= & {} 0,{{K}_{32}}=0,\\ {{K}_{33}}= & {} -\mu {{\Omega }^{2}}+{{\overset{\wedge }{\mathop {k}}\,}_{r11}},\\ {{K}_{34}}= & {} 2{{\zeta }_{1}}{{\mu }_{r}}\Omega ,{{K}_{35}}={{\overset{\wedge }{\mathop {k}}\,}_{r22}},\\ {{K}_{36}}= & {} 0,{{K}_{41}}=0,{{K}_{42}}=0,\\ {{K}_{43}}= & {} -2{{\zeta }_{1}}{{\mu }_{r}}\Omega ,\\ {{K}_{44}}= & {} -{{\mu }_{r}}{{\Omega }^{2}}+{{\overset{\wedge }{\mathop {k}}\,}_{r11}},\\ {{K}_{45}}= & {} 0,\\ {{K}_{46}}= & {} {{\overset{\wedge }{\mathop {k}}\,}_{r12}},\\ {{K}_{51}}= & {} -\varepsilon +\frac{3}{4}\gamma (3{{A}_{11}}{{D}_{11}}+2{{A}_{21}}{{D}_{21}}\\{} & {} -D_{21}^{2}-A_{21}^{2}-3D_{11}^{2}-A_{11}^{2}),\\ {{K}_{52}}= & {} -2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma ({{A}_{21}}{{D}_{11}}+2{{A}_{11}}{{D}_{21}}\\{} & {} -{{A}_{11}}A_{21}^{2}-2{{D}_{11}}{{D}_{21}}),{{K}_{53}}=0,{{K}_{54}}=0,\\ {{K}_{55}}= & {} 1+\varepsilon -{{\Omega }^{2}}+\frac{3}{4}\gamma (A_{21}^{2}+D_{21}^{2}+3A_{11}^{2}\\{} & {} -3{{A}_{11}}{{D}_{11}}-2{{A}_{21}}{{D}_{21}}+D_{11}^{2}),\\ {{K}_{56}}= & {} 2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma ({{D}_{11}}{{D}_{21}}\\{} & {} -{{A}_{11}}{{D}_{21}}+2{{A}_{11}}{{A}_{21}}-2{{A}_{21}}{{D}_{11}}),\\ {{K}_{61}}= & {} 2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma (2{{A}_{11}}{{D}_{21}}+2{{A}_{21}}{{D}_{11}}\\{} & {} -{{A}_{11}}{{A}_{21}}-{{D}_{11}}{{D}_{21}}),\\ {{K}_{62}}= & {} -\varepsilon +\frac{3}{4}\gamma (3{{A}_{21}}{{D}_{21}}+2{{A}_{11}}{{D}_{11}}-A_{11}^{2}\\ {}{} & {} -D_{11}^{2}-3D_{21}^{2}-A_{21}^{2}),{{K}_{63}}=0,{{K}_{64}}={{\overset{\wedge }{\mathop {k}}\,}_{r22}},\\ {{K}_{65}}= & {} -2{{\zeta }_{2}}\Omega -2{{\zeta }_{n}}\mu \Omega +\frac{3}{4}\gamma ({{D}_{11}}{{D}_{21}} \\{} & {} -{{A}_{21}}{{D}_{11}}-2{{A}_{11}}{{D}_{21}}+2{{A}_{11}}{{A}_{21}}),\\ {{K}_{66}}= & {} 1+\varepsilon -{{\Omega }^{2}}+\frac{3}{4}\gamma (A_{11}^{2}+D_{11}^{2}\\{} & {} +3A_{21}^{2}-3{{A}_{21}}{{D}_{21}}-2{{A}_{11}}{{D}_{11}}+D_{21}^{2}). \end{aligned}$$

The following formula can determine the eigenvalues:

$$\begin{aligned} \textbf{M}{{\mathbf {\varphi }}^{\prime \prime }}+\textbf{C}{{\mathbf {\varphi }}^{\prime }}+\mathbf {K\varphi }=0 \end{aligned}$$
(A7)

where \(\lambda \) is the eigenvalue. The stability is determined by calculating the eigenvalues. If the real part of the eigenvalue is negative, the solution of HBM is stable. Otherwise, the solution of HBM is considered unstable.

Appendix B: Table of parameters

The parameters in Eq. (14) are as follows:

$$\begin{aligned} \begin{array}{ll} a_{j k}=\int _{0}^{2 \pi } \phi _{u j}(s) \phi _{u k}(s) ds &{} b_{j k}=\int _{0}^{2 \pi } \phi _{u j}(s) \phi _{u k, s s}(s) d s \\ c_{j k}=\int _{0}^{2 \pi } \phi _{u j}(s) \phi _{v k, s}(s) d s &{} d_{j k}=\int _{0}^{2 \pi } \phi _{u j}(s) \phi _{v k, s s s}(s) d s\\ e_{j k}=\int _{0}^{2 \pi } \phi _{v j}(s) \phi _{v k}(s) d s &{} f_{j k}=\int _{0}^{2 \pi } \phi _{v j}(s) \phi _{v k, s s s s}(s) d s \\ g_{j k}=\int _{0}^{2 \pi } \phi _{v j}(s) \phi _{u k, s s s}(s) d s &{} h_{j k}=\int _{0}^{2 \pi } \phi _{v j}(s) \phi _{u k, s}(s) d s \\ l_{j k}=\int _{0}^{2 \pi } \phi _{v j}(s) \phi _{v k}(s) d s &{}m_{j k}=\int _{0}^{2 \pi } \phi _{u^{*} j}(s) \phi _{u^{*} k}(s) d s \\ n_{j k}=\int _{0}^{2 \pi } \phi _{u^{*} j}(s) \phi _{u^{*} k, s s}(s) d s &{} o_{j k}=\int _{0}^{2 \pi } \phi _{u^{*} j}(s) \phi _{v^{*} k, s}(s) d s\\ p_{j k}=\int _{0}^{2 \pi } \phi _{u^{*} j}(s) \phi _{v^{*} k, s s s}(s) d s &{} q_{j k}=\int _{0}^{2 \pi } \phi _{v^{*} j}(s) \phi _{v^{*} k}(s) d s \\ r_{j k}=\int _{0}^{2 \pi } \phi _{v^{*} j}(s) \phi _{v^{*} k, s s s s}(s) d s &{} s_{j k}=\int _{0}^{2 \pi } \phi _{v^{*} j}(s) \phi _{u^{\circ } k, s s s}(s) d s\\ w_{j k}=\int _{0}^{2 \pi } \phi _{v^{*} j}(s) \phi _{u^{*} k, s}(s) d s &{} y_{j k}=\int _{0}^{2 \pi } \phi _{v^{*} j}(s) \phi _{v^{*} k}(s) d s \\ \end{array} \end{aligned}$$

The parameters in equation (21) are as follows:

\({{X}_{1}}={{A}_{11}}\),\({{X}_{2}}={{A}_{21}}\),\({{X}_{3}}={{A}_{13}}\),\({{X}_{4}}={{A}_{23}}\), \({{X}_{5}}={{B}_{11}}\),\({{X}_{6}}={{B}_{21}}\),\({{X}_{7}}={{B}_{13}}\),\({{X}_{8}}={{B}_{23}}\), \({{X}_{9}}={{D}_{11}}\),\({{X}_{10}}={{D}_{21}}\),\({{X}_{11}}={{D}_{13}}\),\({{X}_{12}}={{D}_{23}}\), \({{X}_{13}}={{E}_{11}}\),\({{X}_{14}}={{E}_{21}}\),\({{X}_{15}}={{E}_{13}}\),\({{X}_{16}}={{E}_{23}}\),\({{Y}_{1}}={{\zeta }_{1}}\),\({{Y}_{2}}={{\zeta }_{2}}\),\({{Y}_{3}}={{\mu }_{\text {r}}}\),\({{Y}_{4}}=\mu \),\({{Y}_{5}}={{\omega }_{\text {n}}}\),\({{Y}_{6}}={{\hat{k}}_{r11}}\),\({{Y}_{7}}={{\hat{k}}_{\text {r}22}}\),\({{Y}_{8}}=\varepsilon \),\({{Y}_{9}}=\tau \),\({{Y}_{9}}=\tau \),\({{Y}_{10}}={{\hat{F}}_{\text {e}}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ZQ., Chen, XY., Tan, DD. et al. A hybrid linear dynamic absorber and nonlinear energy sink for broadband absorption of a circular ring. Nonlinear Dyn 112, 903–923 (2024). https://doi.org/10.1007/s11071-023-09109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09109-y

Keywords

Navigation