Skip to main content
Log in

Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the (2+1)-dimensional nonlinear Schrödinger equation (NLSE) which characterizes the transmission of optical pulses through optical fibers exhibiting refractive index variations corresponding to light intensity changes. Traditional numerical methods typically require a substantial amount of data to ensure the accuracy when solving high-dimensional NLSE, resulting in high experimental costs as well as a significant demand for storage space and computing power. With physical knowledge embedded into deep neural networks, physics-informed neural network (PINN) has been widely applied to solve various complex nonlinear problems and achieved significant results with small amount of data. Setting different groups of initial conditions and boundary conditions with hyperbolic and exponential functions, we construct the corresponding loss functions which will be further applied to train PINN. All data studied here is generated on Python. Based on the predicted results, we depict different types of optical pulses. According to our data experiments, lower prediction errors can be achieved with small volume of data, which fully demonstrates the effectiveness of the PINN. In the meantime, we also perform data-driven parameter discovery to the (2+1)-dimensional NLSE to study the coefficients of the group velocity dispersion and self-phase modulation terms. It can be seen that the PINN has high accuracy and robustness for parameter discovery to the (2+1)-dimensional NLSE. In brief, the use of PINN greatly enriches the diversity of solving methods, providing a reference for research of (2+1)-dimensional solitons in the field of optical fiber communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this paper.

References

  1. Alotaibi, H.: Explore optical solitary wave solutions of the KP equation by recent approaches. Curr. Comput.-Aided Drug Des. 12, 159 (2022)

    Google Scholar 

  2. Rizvi, S.T.R., Seadawy, A.R., Farah, N., Ahmad, S.: Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos, Solitons Fractals 159, 112128 (2022)

    Google Scholar 

  3. El, G., Tovbis, A.: Spectral theory of soliton and breather gases for the focusing nonlinear Schrödinger equation. Phys. Rev. E 101, 052207 (2020)

    MathSciNet  Google Scholar 

  4. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dynam. 106, 1491 (2021)

    Google Scholar 

  5. Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., Barajas-Solano, D.: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour. Res. 56, e2019WR026731 (2020)

    Google Scholar 

  6. Chen, J., Pelinovsky, D.E.: Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Phys. Rev. E 103, 062206 (2021)

    Google Scholar 

  7. Das, C., Chandra, S., Ghosh, B.: Nonlinear interaction of intense laser beam with dense plasma. Plasma Phys. Controlled Fusion 63, 015011 (2020)

    Google Scholar 

  8. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dynam. 106, 1347 (2021)

    Google Scholar 

  9. Ghosh, S.: Homoclinic chaos in strongly dissipative strongly coupled complex dusty plasmas. Phys. Rev. E 103, 023205 (2021)

    MathSciNet  Google Scholar 

  10. Zayed, E.M.E., Shohib, R.M.A., Al-Nowehy, A.G.: On solving the (3+1)-dimensional NLEQZK equation and the (3+1)-dimensional NLmZK equation using the extended simplest equation method. Comput. Math. Appl. 78, 3390–3407 (2019)

    MathSciNet  Google Scholar 

  11. Cao, F., Lü, X., Zhou, Y.X., Cheng, X.Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn. 111, 14597 (2023)

    Google Scholar 

  12. Kumar, D., Kumar, S.: Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. Comput. Math. Appl. 78, 857–877 (2019)

    MathSciNet  Google Scholar 

  13. Nakatsuji, H., Nakashima, H., Kurokawa, Y.I.: Solving the Schrödinger equation of atoms and molecules using one-and two-electron integrals only. Phys. Rev. A 101, 062508 (2020)

    MathSciNet  Google Scholar 

  14. Tang, X.F., Xu, Z.Y., Gao, C.W., Xiao, Y., Liu, L., Zhang, X.G., Xi, L.X., Xu, H.Y., Bai, C.L.: Physical layer encryption for coherent PDM system based on polarization perturbations using a digital optical polarization scrambler. Opt. Express 31, 26791–26806 (2023)

    Google Scholar 

  15. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev-Petviashvili equation. Phy. Fluid. 35, 106613 (2023)

    Google Scholar 

  16. Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front. Phys. 7, 34 (2019)

    Google Scholar 

  17. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661–2664 (2019)

    Google Scholar 

  18. Perego, A.M.: Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects. Opt. Lett. 45, 3913–3916 (2020)

    Google Scholar 

  19. Gaafar, M.A., Renner, H., Petrov, A.Y., Eich, M.: Linear Schrödinger equation with temporal evolution for front induced transitions. Opt. Exp. 27, 21273–21284 (2019)

    Google Scholar 

  20. Maghrabi, M.M., Bakr, M.H., Kumar, S.: Adjoint sensitivity analysis approach for the nonlinear Schrödinger equation. Opt. Lett. 44, 3940–3943 (2019)

    Google Scholar 

  21. Uddin, M.H., Zaman, U.H.M., Arefin, M.A., Akbar, M.A.: Nonlinear dispersive wave propagation pattern in optical fiber system. Chaos, Solitons Fractals 164, 112596 (2022)

    MathSciNet  Google Scholar 

  22. Huang, C., Dong, L.: Dissipative surface solitons in a nonlinear fractional Schrödinger equation. Opt. Lett. 44, 5438–5441 (2019)

    Google Scholar 

  23. Gao, D., Lü, X., Peng, M.S.: Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation. Phys. Scr. 98, 095225 (2023)

    Google Scholar 

  24. Chen, Y., Lü, X., Wang, X.L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 138, 492 (2023)

    Google Scholar 

  25. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 121(107205), 25 (2023)

    Google Scholar 

  26. Feng, D.H., Jiao, J.J., Jiang, G.R.: G, Optical solitons and periodic solutions of the (2+1)-dimensional nonlinear Schrödinger’s equation. Phys. Lett. A 382, 2081–2084 (2018)

    MathSciNet  Google Scholar 

  27. Hamed, A.A., Kader, A.A., Latif, M.A.: Solitons, rogue waves and breather solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients. Optik 216, 164768 (2020)

    Google Scholar 

  28. Triki, H., Kruglov, V.I.: Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media. Phys. Rev. E 101, 042220 (2020)

    Google Scholar 

  29. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model. Commun. Theor. Phys. 75, 055005 (2023)

    MathSciNet  Google Scholar 

  30. Kruglov, V.I., Triki, H.: Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103, 013521 (2021)

    MathSciNet  Google Scholar 

  31. Liu, B., Zhang, X.E., Wang, B.: Xing Lü, Rogue waves based on the coupled nonlinear Schrodinger option pricing model with external potential. Mod. Phys. Lett. B 36, 2250057 (2022)

    Google Scholar 

  32. Balakin, A.A., Litvak, A.G., Skobelev, S.A.: Multicore-fiber solitons and laser-pulse self-compression at light-bullet excitation in the central core of multicore fibers. Phys. Rev. A 100, 053830 (2019)

    Google Scholar 

  33. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108, 4181 (2022)

    Google Scholar 

  34. Runge, A.F., Alexander, T.J., Newton, J., Alavandi, P.A., Hudson, D.D., Blanco-Redondo, A., de Sterke, C.M.: Self-similar propagation of optical pulses in fibers with positive quartic dispersion. Opt. Lett. 45, 3365–3368 (2020)

    Google Scholar 

  35. Lan, Z.Z.: Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fibe. Appl. Math. Lett. 98, 128–134 (2019)

    MathSciNet  Google Scholar 

  36. Najafi, M., Arbabi, S.: Traveling wave solutions for nonlinear Schrödinger equations. Optik 126, 3992–3997 (2015)

    Google Scholar 

  37. Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos, Solitons Fractals 37, 1136–1142 (2008)

    MathSciNet  Google Scholar 

  38. Zhang, W.: Generalized variational principle for long water-wave equation by He’s semi-inverse method. Math. Probl. Eng. 2009, 925187 (2009)

    MathSciNet  Google Scholar 

  39. Zhao, Y.W., Xia, J.W.: Xing Lü, The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dyn. 108, 4195 (2022)

    Google Scholar 

  40. Diao, X., Chen, R., Chang, G.: Particle swarm optimization of SPM-enabled spectral selection to achieve an octave-spanning wavelength-shift. Opt. Exp. 29, 39766–39776 (2021)

    Google Scholar 

  41. Rizvi, S.T.R., Khan, S.U.D., Hassan, M., Fatima, I., Khan, S.U.D.: Stable propagation of optical solitons for nonlinear Schrödinger equation with dispersion and self-phase modulation. Math. Comput. Simul. 179, 126–136 (2021)

    Google Scholar 

  42. Song, C.Q., Zhao, H.Q.: Dynamics of various waves in nonlinear Schrödinger equation with stimulated Raman scattering and quintic nonlinearity. Nonlinear Dyn. 99, 2971–2985 (2020)

    Google Scholar 

  43. Ahsan, A.S., Agrawal, G.P.: Spatio-temporal enhancement of Raman-induced frequency shifts in graded-index multimode fibers. Opt. Lett. 44, 2637–2640 (2019)

    Google Scholar 

  44. Kruglov, V.I., Triki, H.: Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103, 013521 (2021)

    MathSciNet  Google Scholar 

  45. Tang, L.: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos, Solitons Fractals 161, 112383 (2022)

    Google Scholar 

  46. Miyazawa, Y., Chong, C., Kevrekidis, P.G., Yang, J.: Rogue and solitary waves in coupled phononic crystals. Phys. Rev. E 105, 034202 (2022)

    MathSciNet  Google Scholar 

  47. Zhou, H., Chen, Y., Tang, X., Li, Y.: Complex excitations for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 109, 1947–1967 (2022)

    Google Scholar 

  48. Kumar, V., Jiwari, R., Djurayevich, A., Khudoyberganov, M.: Hyperbolic (2+1)-dimensional Schrödinger equation: Similarity analysis, Optimal system and complexitons for the one-parameter group of rotations. Commun. Nonlinear Sci. Numer. Simul. 115, 106784 (2022)

    Google Scholar 

  49. Kumar, V., Jiwari, R., Djurayevich, A., Khudoyberganov, M.: Hyperbolic (3+1)-Dimensional Nonlinear Schrödinger Equation: Lie Symmetry Analysis and Modulation Instability. J. Math. 2022, 1–8 (2022)

    Google Scholar 

  50. Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6, 313 (1998)

    Google Scholar 

  51. Dehghan, M., Shokri, A.: A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Comput. Math. Appl. 54, 136–146 (2007)

    MathSciNet  Google Scholar 

  52. Silahli, S.Z., Alasik, W., Litchinitser, N.M.: Modulation instability of structured-light beams in negative-index metamaterials. J. Opt. 18, 054010 (2016)

    Google Scholar 

  53. Ahmed, I., Seadawy, A.R., Lu, D.: Kinky breathers, W-shaped and multi-peak solitons interaction in (2+1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Eur. Phys. J. Plus 134, 120 (2019)

    Google Scholar 

  54. Huang, W., Xu, C., Chu, S.T., Chaudhuri, S.K.: The finite-difference vector beam propagation method: analysis and assessment. J. Lightwave Technol. 10, 295–305 (1992)

    Google Scholar 

  55. Tariq, K., Seadawy, A., Zainab, H., Ashraf, M., Rizvi, S.: Some new optical dromions to (2+1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Opt. Quant. Electron. 54, 385 (2022)

    Google Scholar 

  56. Yu, J., Sun, Y.: Exact traveling wave solutions to the (2+ 1)-dimensional Biswas-Milovic equations. Optik 149, 378–383 (2017)

    Google Scholar 

  57. Ali, M., Alquran, M., Salman, O.B.: A variety of new periodic solutions to the damped (2+1)-dimensional Schrödinger equation via the novel modified rational sine-cosine functions and the extended tanh-coth expansion methods. Results in Phys. 37, 105462 (2022)

    Google Scholar 

  58. Liu, K.W., Lü, X., Gao, F., Zhang, J.: Expectation-maximizing network reconstruction and most applicable network types based on binary time series data. Physica D 454, 133834 (2023)

    MathSciNet  Google Scholar 

  59. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inform. Fusion 42, 146–157 (2018)

    Google Scholar 

  60. Wang, G., Ye, J.C., De Man, B.: Deep learning for tomographic image reconstruction. Nature Mach. Intell. 2, 737–748 (2020)

    Google Scholar 

  61. Gao, Y., Gao, L., Li, X.: A generative adversarial network based deep learning method for low-quality defect image reconstruction and recognition. IEEE Trans. Industr. Inf. 17, 3231–3240 (2020)

    Google Scholar 

  62. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32, 604–624 (2020)

    MathSciNet  Google Scholar 

  63. Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M.: Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Appl. Soft Comput. J. 90, 106181 (2020)

    Google Scholar 

  64. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    MathSciNet  Google Scholar 

  65. Cuomo, S., Cola, V.S.D., Giampaolo, F., Rozza, G., Raissi, M.: Scientific machine learning through physics-informed neural networks: where we are and whats next. J. Sci. Comput. 92, 88 (2022)

    MathSciNet  Google Scholar 

  66. Yadav, O., Jiwari, R.: Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation. Nonlinear Dyn. 95, 2825–2836 (2018)

    Google Scholar 

  67. Jiwari, R., Kumar, S., Mittal, R., Awrejcewicz, J.: A meshfree approach for analysis and computational modeling of non-linear Schrödinger equation. Comput. Appl. Math. 39, 2 (2020)

    Google Scholar 

  68. Jiwari, R., Pandit, S., Koksal, M.: A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems. Comput. Appl. Math. 38, 3 (2019)

  69. Pandit, S.: Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model. Wave Motion 109, 102846 (2022)

    MathSciNet  Google Scholar 

  70. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning method for the Chen-Lee-Liu equation: Rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    MathSciNet  Google Scholar 

  71. Wu, G.Z., Fang, Y., Wang, Y.Y., Wu, G.C., Dai, C.Q.: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN. Chaos, Solitons Fractals 152, 111393 (2021)

    MathSciNet  Google Scholar 

  72. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Google Scholar 

  73. Pu, J., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Google Scholar 

  74. Yin, Y., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE. Commun. Nonlinear Sci. Numer. Simul. 126, 107441 (2023)

    MathSciNet  Google Scholar 

  75. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv: 1412.6980 (2014)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 12275017 and by the Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhao, YW. & Lü, X. Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications. Nonlinear Dyn 112, 1291–1306 (2024). https://doi.org/10.1007/s11071-023-09083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09083-5

Keywords

Navigation