Skip to main content
Log in

Multi-lump solutions of KPI

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A family of rational solutions of the Kadomtsev–Petviashvili I equation with N distinct peaks as \(|t| \rightarrow \infty \), is characterized in terms of the partitions of a positive integer N. This new approach leads to a complete classification of these N-lump solutions whose properties including the asymptotic location of the peaks are investigated using the Schur function associated with a given partition of N. Relationship between the geometric structures of the N-lump wave pattern and the Young diagram of the associated integer partition is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  1. Ablowitz, M., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  2. Ablowitz, M., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, London (1991)

    Book  Google Scholar 

  3. Ablowitz, M.J., Villarroel, J.: Solutions to the time dependent Schrödinger and the Kadomtsev–Petviashvili equations. Phys. Rev. Lett. 78, 570–573 (1997)

    Article  MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Chakravarty, S., Trubatch, A.D., Villarroel, J.: A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev–Petviashvili I equations. Phys. Lett. A 267, 132–146 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ablowitz, M.J.: Nonlinear Dispersive Waves. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  6. Chakravarty, S., Zowada, M.: Dynamics of KPI lumps. J. Phys. A Math. Theor. 55, 195701 (2022)

    Article  MathSciNet  Google Scholar 

  7. Chakravarty, S., Zowada, M.: Classification of KPI lumps. J. Phys. A Math. Theor. 55, 215701 (2022)

    Article  MathSciNet  Google Scholar 

  8. Chakravarty, S., Zowada, M.: Multi-lump wave patterns via integer partitions. Phys. D 446, 133644 (2023)

    Article  MathSciNet  Google Scholar 

  9. Chang, J.-H.: Asymptotic analysis of multi-lump solutions of the Kadomtsev–Petviashvili-I equation. Theor. Math. Phys. 195, 676–689 (2018)

    Article  Google Scholar 

  10. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci. 11, 667–672 (2011)

    Article  Google Scholar 

  11. Felder, G., Hemery, A.D., Veselov, A.P.: Zeros of Wronskians of Hermite polynomials and Young diagrams. Phys. D 241, 2131–2137 (2012)

    Article  MathSciNet  Google Scholar 

  12. Fukutani, S., Okamoto, K., Umemura, H.: Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations. Nagoya Math. J. 159, 179–200 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gaillard, P.: Multiparametric families of solutions of the Kadomtsev–Petviashvili-I equation, the structure of their rational representations, and multi-rogue waves. Theor. Math. Phys. 196, 1174–1199 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gorshkov, K.A., Pelinovsky, D.E., Stepanyants, Yu.A.: Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev–Petviashvili equation. JETP 104, 2704–2720 (1993)

    Google Scholar 

  15. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  16. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, London (2000)

    Book  Google Scholar 

  17. Johnson, R.S., Thompson, S.: A solution of the inverse scattering problem for the Kadomtsev–Petviashvili equation by the method of separation of variables. Phys. Lett. A 66, 279–281 (1978)

    Article  MathSciNet  Google Scholar 

  18. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  19. Kodama, Y.: Solitons in Two-Dimensional Shallow Water. SIAM, Philadelphia (2018)

    Book  Google Scholar 

  20. Lonngren, K.E.: Ion acoustic soliton experiments in a plasma. Opt. Quantum Electron. 30, 615–630 (1998)

    Article  Google Scholar 

  21. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

  22. Murnaghan, F.D.: On the representations of the symmetric group. Am. J. Math. 59, 437–488 (1937)

    Article  Google Scholar 

  23. Macdonald, I.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    Book  Google Scholar 

  24. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. The Inverse Scattering Transform. Plenum, New York (1984)

    Google Scholar 

  25. Noumi, M., Yamada, Y.: Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, 53–86 (1999)

    Article  MathSciNet  Google Scholar 

  26. Okamoto, K.: Studies on the Painlevé equations III. Second and fourth Painlevé equations, PII and PIV. Math. Ann. 275, 221–255 (1986)

    Article  MathSciNet  Google Scholar 

  27. Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold. RIMS Kokyuroku (Kyoto Univ.) 439, 30–46 (1981)

    Google Scholar 

  28. Satsuma, J., Ablowitz, M.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  Google Scholar 

  29. Turitsyn, S.K., Fal’kovich, G.E.: Stability of magneto-elastic solitons and self-focusing of sound in anti-ferromagnet. Sov. Phys. JETP 62, 146–152 (1985)

    Google Scholar 

  30. Yang, B., Yang, J.: Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation. J. Nonlinear Sci. 32, 52 (2022)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z., Li, B., Chen, J., Guo, Q.: The nonlinear superposition between anomalous scattering of lumps and other waves for KPI equation. Nonlinear Dyn. 108, 4157–4169 (2022)

  32. Zhang, Z., Yang, X., Li, B., Guo, Q., Stepanyants, Y.: Multi-lump formations from lump chains and plane solitons in the KP1 equation. Nonlinear Dyn. 111, 1625–1642 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially supported by NSF Grant No. DMS-1911537.

Funding

This project was partially supported by NSF Grant No. DMS-1911537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbarish Chakravarty.

Ethics declarations

Conflict of interest

The author has no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, S. Multi-lump solutions of KPI. Nonlinear Dyn 112, 575–589 (2024). https://doi.org/10.1007/s11071-023-09044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09044-y

Keywords

Navigation