Skip to main content
Log in

Estimator-based dynamic learning from neural control of discrete-time strict-feedback systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic learning issue from adaptive neural control for a class of discrete-time strict-feedback nonlinear systems is the main topic of this paper. Different from the traditional control schemes, a new auxiliary error estimator is constructed in this paper to promote the solution of weight convergence. Subsequently, a new weight updating law is designed based on the estimation error rather than the conventional tracking error. Based on the variable substitution framework, a new adaptive neural control strategy is constructed to assure the stability of the considered system, neural accurate approximation of unknown dynamics as well as the exponential convergence of neural weights. Such convergent weights are shown and stored as constants, i.e., experience knowledge. In light of the experience knowledge, a static learning control strategy is constructed. Such a control strategy avoids time consumption caused by updating weights, facilitates the transient control performance and lessens space complexity. Simulations are fulfilled to demonstrate the availability of the presented strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Luo, C., Lei, H., Li, J., Zhou, C.: A new adaptive neural control scheme for hypersonic vehicle with actuators multiple constraints. Nonlinear Dyn. 100, 3529–3553 (2020)

    Article  MATH  Google Scholar 

  2. Ding, Y., Fu, M., Luo, P., Wu, F.X.: Network learning for biomarker discovery. Int. J. Netw. Dyn. Intell. 2, 51–65 (2023)

    Google Scholar 

  3. Zhao, G., Li, Y., Xu, Q.: From emotion AI to cognitive AI. Int. J. Netw. Dyn. Intell. 1, 65–72 (2022)

    Google Scholar 

  4. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor Francis, London, UK (1999)

    Google Scholar 

  5. Huang, C., Liu, Z., Chen, C.L.P., Zhang, Y.: Adaptive neural asymptotic control for uncertain nonlinear multiagent systems with a fuzzy dead zone constraint. Fuzzy Sets Syst. 432, 152–167 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liang, H., Liu, G., Zhang, H., Huang, T.: Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2239–2250 (2021)

    Article  MathSciNet  Google Scholar 

  7. Sun, X., Wang, G., Fan, Y.: Adaptive trajectory tracking control of vector propulsion unmanned surface vehicle with disturbances and input saturation. Nonlinear Dyn. 106, 2277–2291 (2021)

    Article  Google Scholar 

  8. Krstic, M., Kanellakopoulos, I., Kokotovic, P.K.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  9. Polycarpou, M.M.: Stable adaptive neural scheme for nonlinear systems. IEEE Trans. Autom. Control 41, 447–451 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, L., Cheng, Z., Liu, Y., Li, H.: Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2022.3210269

  11. Zheng, X., Li, H., Ahn, C.K., Yao, D.: NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans. Aerosp. Electron. Syst. https://doi.org/10.1109/TAES.2022.3205566

  12. Wang, M., Wang, L., Huang, R., Yang, C.: Event-based disturbance compensation control for discrete-time SPMSM with mismatched disturbances. Int. J. Syst. Sci. 52(4), 785–804 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, T., Li, T.: Attitude tracking control of a quadrotor UAV subject to external disturbance with L2 performance. Nonlinear Dyn. 111, 10183–10200 (2023)

    Article  Google Scholar 

  14. Ding, J., Zhang, W.: Prescribed performance tracking control for high-order uncertain nonlinear systems. Nonlinear Dyn. 111, 14199–14212 (2023)

  15. Zhou, Q., Zhao, S., Li, H., Lu, R., Wu, C.: Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans. Neural Netw. Learn. Syst. 30, 3611–3620 (2018)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y.-J., Zeng, Q., Tong, S., Chen, C.L.P., Liu, L.: Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans. Ind. Electron. 66, 9458–9466 (2019)

    Article  Google Scholar 

  17. Ding, R., Ding, C., Xu, Y., Yang, X.: Neural-network-based adaptive robust precision motion control of linear motors with asymptotic tracking performance. Nonlinear Dyn. 108, 1339–1356 (2022)

    Article  Google Scholar 

  18. Abdelatti, M., Yuan, C.Z., Zeng, W., Wang, C.: Cooperative deterministic learning control for a group of homogeneous nonlinear uncertain robot manipulators. Sci. China Inf. Sci. 61, 112201 (2018)

    Article  MathSciNet  Google Scholar 

  19. Fu, K.S.: Learning control systems and intelligent control systems: an intersection of artifical intelligence and automatic control. IEEE Trans. Autom. Control 16, 70–72 (1971)

    Article  Google Scholar 

  20. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  21. Liu, L., Wang, Z.S., Zhang, H.G.: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans. Autom. Sci. Eng. 14, 299–313 (2017)

    Article  Google Scholar 

  22. Guo, X., Bi, Z., Wang, J., Qin, S., Liu, S., Qi, L.: Reinforcement learning for disassembly system optimization problems: a survey. Int. J. Netw. Dyn. Intell. 2, 1–14 (2023)

    Google Scholar 

  23. Zhang, H., Wei, Q., Liu, D.: An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games. Automatica 47, 207–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, D., Liu, D., Mu, C., Zhang, Y.: Neural network learning and robust stabilization of nonlinear systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 29, 1342–1351 (2017)

    Article  Google Scholar 

  25. Wang, X., Sun, Y., Ding, D.: Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques. Int. J. Netw. Dyn. Intell. 1, 85–98 (2022)

    Google Scholar 

  26. Wang, C., Hill, D.J.: Learning from neural control. IEEE Trans. Neural Netw. 17, 130–146 (2006)

    Article  Google Scholar 

  27. Liu, T., Wang, C., Hill, D.J.: Learning from neural control of nonlinear systems in normal form. Syst. Control Lett. 58, 633–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, S.-L., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25, 111–123 (2014)

    Article  Google Scholar 

  29. Wang, M., Wang, C.: Neural learning control of pure-feedback nonlinear systems. Nonlinear Dyn. 79, 2589–2608 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, M., Wang, C.: Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 1247–1259 (2015)

  31. Wang, Q., Wang, C., Sun, Q.: A model-based time-to-failure prediction scheme for nonlinear systems via deterministic learning. J. Frankl. Inst. 357, 3771–3791 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dai, S.-L., Wang, M., Wang, C.: Neural learning control of marine surface vessels with guaranteed transient tracking performance. IEEE Trans. Ind. Electron. 63, 1717–1727 (2016)

    Article  Google Scholar 

  33. Chen, T., Hill, D.J., Wang, C.: Distributed fast fault diagnosis for multimachine power systems via deterministic learning. IEEE Trans. Ind. Electron. 67, 4152–4162 (2020)

    Article  Google Scholar 

  34. Shi, H., Wang, M., Wang, C.: Pattern-based autonomous smooth switching control for constrained flexible joint manipulator. Neurocomputing 492, 162–173 (2022)

  35. Chen, W., Wang, Z., Ding, D., Dong, H.: Consensusability of discrete-time multi-agent systems under binary encoding with bit errors. Automatica 133, 109867 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Possieri, C., Incremona, G.P., Calafiore, G.C., Ferrara, A.: An iterative data-driven linear quadratic method to solve nonlinear discrete-time tracking problems. IEEE Trans. Autom. Control 66, 5514–5521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mu, C., Liao, K., Wang, K.: Event-triggered design for discrete-time nonlinear systems with control constraints. Nonlinear Dyn. 103, 2645–2657 (2021)

    Article  MATH  Google Scholar 

  38. Yu, L., Cui, Y., Liu, Y., Alotaibi, N.D., Alsaadi, F.E.: Sampled-based consensus of multi-agent systems with bounded distributed time-delays and dynamic quantisation effects. Int. J. Syst. Sci. 53(11), 2390–2406 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ji, D., Wang, C., Li, J., Dong, H.: A review: data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment. Syst. Sci. Control Eng. 9(1), 724–747 (2021)

    Article  Google Scholar 

  40. Wu, W., Hu, J., Zhang, F., Wang, C.: New results on rapid dynamical pattern recognition via deterministic learning from sampling sequences. IEEE Trans. Neural Netw. Learn. Syst. 59(2), 1738–1748 (2023)

  41. Ge, S.S., Li, G.Y., Lee, T.H.: Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 39, 807–819 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ge, S.S., Yang, C., Lee, T.H.: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans. Neural Netw. 19, 1599–1614 (2008)

    Article  Google Scholar 

  43. Wang, M., Shi, H., Wang, C., Fu, J.: Neural learning control for discrete-time nonlinear systems in pure-feedback form. Sci. China Inf. Sci. 65(122206), 1–122206 (2022)

    MathSciNet  Google Scholar 

  44. Ge, S.S., Zhang, J., Lee, T.H.: Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Trans. Syst. Man Cybern. Syst. 34, 1630–1645 (2004)

    Article  Google Scholar 

  45. Wang, M., Wang, Z., Dong, H., Han, Q.-L.: A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Trans. Autom. Control 66, 1484–1496 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, M., Shi, H., Wang, C., Fu, J.: Dynamic learning from adaptive neural control for discrete-time strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 33, 3700–3712 (2022)

  47. Ding, D., Wang, Z., Han, Q.-L.: Neural-network-based outputfeedback control with stochastic communication protocols. Automatica 106, 221–229 (2019)

  48. Chen, W., Hua, S., Ge, S.S.: Consensus-based distributed cooperative learning control for a group of discrete-time nonlinear multi-agent systems using neural networks. Automatica 50, 2254–2268 (2014)

  49. Kurdila, A.J., Narcowich, F.J., Ward, J.D.: Persistency of excitation in identification using radial basis function approximants. SIAM J. Control Optim. 33, 625–642 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, Y.-J., Li, S., Tong, S., Chen, C.L.P.: Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 30, 295–305 (2019)

  51. Shi, H., Wang, M., Wang, C.: Leader-follower formation learning control of discrete-time nonlinear multiagent systems. IEEE Trans. Cybern. 53, 1184–1194 (2023)

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 62273156 and 61890922) and the Guangdong Natural Science Foundation under Grants 2019B151502 058.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Jiang, Z. & Shi, H. Estimator-based dynamic learning from neural control of discrete-time strict-feedback systems. Nonlinear Dyn 111, 21735–21746 (2023). https://doi.org/10.1007/s11071-023-08989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08989-4

Keywords

Navigation