Skip to main content
Log in

Nonlinear modal analysis of multi-walled nanotube oscillations using nonlocal anisotropic elastic shell model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

System of nonlinear partial differential equations, which describes the multi-walled carbon nanotube nonlinear oscillations, is derived. The Sanders–Koiter nonlinear shell theory and the nonlocal anisotropic Hooke’s law are used. Three kinds of nonlinearities are accounted. First of all, the van der Waals forces are considered as nonlinear functions of the radial displacements. Secondly, the nanotube walls displacements have moderate values, which are described by the geometrically nonlinear shell theory. Thirdly, as the stress resultants are the nonlinear functions of the displacements, the additional nonlinear terms are accounted in the equations of motions. These terms are derived from the natural boundary conditions, which are used in the weighted residual method. The finite degrees of freedom nonlinear dynamical system is derived to describe the oscillations of nanostructure. The multi-mode invariant manifolds are used to describe the free nonlinear oscillations, as the dynamical systems have the internal resonances 1:1. The motions on the invariant manifolds are described by two degrees of freedom nonlinear dynamical systems, which are studied by the multiple scales method. The backbone curves of the nonlinear modes are analyzed. As follows from the results of the numerical simulations, the eigenmode of low eigenfrequency has commensurable longitudinal, transversal and circumference displacements. In this case, the nonlinear parts of the van der Waals forces harden essentially the backbone curve of the oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  2. Avramov, K.V., Chernobryvko, M., Uspensky, B., Seitkazenova, K.K., Myrzaliyev, D.: Self-sustained vibrations of functionally graded carbon nanotubes reinforced composite cylindrical shell in supersonic flow. Nonl. Dyn. 98, 1853–1876 (2019)

    Google Scholar 

  3. Uspensky, B., Avramov, K., Nikonov, O., Sahno, N.: Dynamic instability of functionally graded carbon nanotubes-reinforced composite joined conical-cylindrical shell in supersonic flow. Int. J. Struct. Stab. Dyn. 22, 2250039 (2022)

  4. Gibson, R.F., Ayorinde, E.O., Wen, Y.-F.: Vibrations of carbon nanotubes and their composites: a review. Comp. Scien. Tech. 67, 1–28 (2007)

    Google Scholar 

  5. Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys.Phys.. 104, 2089–2092 (1996)

    Google Scholar 

  6. Yakobson, B.I., Campbell, M.P., Brabec, C.J., Bernholc, J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci.Sci.. 8, 241–248 (1997)

    Google Scholar 

  7. Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vibr. 296, 746–756 (2006)

    Google Scholar 

  8. Kuang, Y.D., He, X.Q., Chen, C.Y., Li, G.Q.: Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. Comp. Mater. Sc. 45, 875–880 (2009)

    Google Scholar 

  9. Avramov, K., Kabylbekova, B.: Bifurcations behavior and chaotic self-sustained vibrations of cantilevered nanotube conveying fluid. Acta Mech. 230, 3235–3258 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Adali, S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Nano Let. 9, 1737–1741 (2009)

    Google Scholar 

  11. Ansari, R., Hemmatnezhad, M.: Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Math. Comp. Mod. 53, 927–938 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fakhrabadi, M.M., Rastgoo, A., Ahmadian, M.T.: Non-linear behaviors of carbon nanotubes under electrostatic actuation based on strain gradient theory. Int. J. Non Lin. Mech. 67, 236–244 (2014)

    Google Scholar 

  13. Hajnayeb, A., Khadem, S.E.: Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J. Sound Vibr. 331, 2443–2456 (2012)

    Google Scholar 

  14. Soltani, P., Farshidianfar, A.: Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube, based on the nonlocal continuum theory by energy balance method. Appl. Math. Model. 36, 3712–3724 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Peng, J., Wu, J., Hwang, K.C., Song, J., Huang, Y.: Can a single-wall carbon nanotube be modeled as a thin shell?. J. Mech. Phys. Sol. 56, 2213–2224 (2008)

  16. Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. of Mech. Sc. 53, 786–792 (2011)

    Google Scholar 

  17. Daneshmand, F., Rafiei, M., Mohebpour, S.R., Heshmati, M.: Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory. Appl. Mathem. Model. 37, 7983–8003 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Daneshmand, F.: Combined strain-inertia gradient elasticity in free vibration shell analysis of single walled carbon nanotubes using shell theory. Appl. Mathem. Comp. 243, 856–869 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Wang, L., Hu, H., Guo, W.: Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes. Nanotech. 17, 1408–1415 (2006)

    Google Scholar 

  20. Wang, Q., Varadan, V.K.: Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater. Struct. 16, 178–190 (2007)

    Google Scholar 

  21. Das, S.L., Mandal, T., Gupta, S.S.: Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories. Int. J. Sol. Struct. 50, 2792–2797 (2013)

    Google Scholar 

  22. Wang, C.Y., Li, X.H., Luo, Y.: Circumferential nonlocal effect on the buckling and vibration of nanotubes. Phys. Let. A 380, 1455–1461 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Li, R., Kardomateas, G.A.: Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model. ASME J. Appl. Mech. 74, 1087–1094 (2007)

    Google Scholar 

  24. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., Yakobson B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Sol. 56, 3475–3485 (2008)

  25. Chowdhury, R., Wang, C.Y., Adhikari, S.: Low frequency vibration of multiwall carbon nanotubes with heterogeneous boundaries. J. Phys. D. 43, 085405 (2010)

    Google Scholar 

  26. He, X.Q., Kitipornchai, S., Wang, C.M., Liew, K.M.: Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int. J. Sol. Struct. 42, 6032–6047 (2005)

    MATH  Google Scholar 

  27. Hoseinzadeh, M.S., Khadem, S.E.: Thermo elastic vibration and damping analysis of double-walled carbon nanotubes based on shell theory. Phys. E 43, 1146–1154 (2011)

    Google Scholar 

  28. Asghar, S., Naeem, M.N., Hussain, M.: Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory. Phys. E 116, 113726 (2020)

    Google Scholar 

  29. Yan, Y., Wang, W.: Axisymmetric vibration of SWCNTs in water with arbitrary chirality based on nonlocal anisotropic shell model. Appl. Math. Model. 39, 3016–3023 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Fazelzadeh, S.A., Ghavanloo, E.: Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Comp. Struct. 94, 1016–1022 (2012)

    Google Scholar 

  31. Ghavanloo, E., Fazelzadeh, S.A.: Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 36, 4988–5000 (2012)

    Google Scholar 

  32. Ru, C.Q.: Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math. Mech. Sol. 14, 88–101 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Yan, Y., Zhang, L.X., Wang. W.Q.: Dynamical mode transitions of simply supported double-walled carbon nanotubes based on an elastic shell model. J. Appl. Phys. 103, 113523 (2008)

  34. Arani, A.G., Kolahchi, R., Maraghi, Z.K.: Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl. Math. Model. 37, 7675–7707 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Radial Breathing Modes. Comp. Struct. 184, 613–632 (2018)

    MATH  Google Scholar 

  36. Strozzi, M., Smirnov, V.V., Manevitch, L., Milani, M., Pellicano, F.: Nonlinear vibrations and energy exchange of single—walled carbon nanotubes. Circumferential flexural modes. J. Sound Vib. 381, 156–178 (2016)

  37. Avramov, K.V.: Nonlinear vibrations characteristics of single-walled carbon nanotubes via nonlocal elasticity. Int. J. Nonl. Mech. 117, 149–160 (2018)

    Google Scholar 

  38. Strozzi, M., Smirnov, V.V., Pellicano, F., Kovaleva, M.: Nonlocal anisotropic elastic shell model for vibrations of double-walled carbon nanotubes under nonlinear van der Waals interaction forces. Int. J. Non l. Mech. 146, 104172 (2022)

    Google Scholar 

  39. Strozzi, M., Pellicano, F.: Nonlinear resonance interaction between conjugate circumferential flexural modes in single-walled carbon nanotubes. Shock Vib. 3241698 (2019)

  40. Mikhlin Y.V., Avramov K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of Theoretical Developments. Appl. Mech. Rev. 63, 060802 (2010)

  41. Avramov, K.V., Mikhlin, Yu.V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65, 020801 (2013)

    Google Scholar 

  42. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part i: a useful framework for the structural dynamics. Mech. Syst. Sign. Proc. 23, 170–194 (2009)

    Google Scholar 

  43. Albu-Sch ffer, A., Santina, C.D.: A review on nonlinear modes in conservative mechanical systems. Ann. Rev. in Cont. 50, 49–71 (2020)

  44. Vakakis, A., Manevich, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.A.: Normal modes and localization in nonlinear systems. Wiley Interscience, New York (1996)

    MATH  Google Scholar 

  45. Behfar, K., Naghdabadi, R.: Nanoscale vibrational analysis of a multi-layered grapheme sheet embedded in an elastic medium. Comp. Sci. Tech. 65, 1159–1164 (2005)

    Google Scholar 

  46. Chang, T.: A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Sol. 58, 1422–1433 (2010)

  47. Chang, T., Geng, J., Guo, X.: Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462, 2523–2540 (2006)

    MATH  Google Scholar 

  48. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  49. Khosrozadeh, A., Hajabasi, M.A.: Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl. Math. Model. 36, 997–1007 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Washizu, K.: Variational methods in elasticity and plasticity, 3rd edn. Pergamon Press, Oxford-New York (1982)

    MATH  Google Scholar 

  51. Zienkiewicz, O.: Morgan, K: Finite elements and approximation. John Wiley & Sons, New York (1983)

    Google Scholar 

  52. Pesheck, E., Boivin, N., Pierre, C., Shaw, S.W.: Nonlinear modal analysis of structural systems using multi-mode invariant manifolds. Nonlinear Dyn. 25, 183–205 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib.Vib. 164, 85–124 (1993)

    MATH  Google Scholar 

  54. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, New York (1988)

    MATH  Google Scholar 

  55. Avramov, K.V.: Bifurcations of parametric oscillations of beams with three equilibria. Acta Mech. 164, 115–138 (2003)

    MATH  Google Scholar 

  56. Avramov, K.V., Mikhlin, Yu.V.: Forced oscillations of a system, containing a snap-through truss, close to its equilibrium position. Nonl. Dyn. 35, 361–379 (2004)

    MATH  Google Scholar 

  57. Avramov, K.V., Gendelman, O.V.: On interaction of vibrating beam with essentially nonlinear absorber. Meccan. 45, 355–365 (2010)

    MathSciNet  MATH  Google Scholar 

  58. He, X.Q., Kitipornchai, S., Liew, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    MATH  Google Scholar 

  59. Strozzi, M., Pellicano, F.: Linear vibrations of triple-walled carbon nanotubes. Math. Mech. Sol. 23 (2017)

  60. Liew, K.M., He, X.Q., Wong, C.H.: On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater. 52, 2521–2527 (2004)

    Google Scholar 

  61. Lambin, Ph., Meunier, V., Rubio, A.: Electronic structure of polychiral carbon nanotubes. Phys. Rev. B 62, 5129–5135 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Avramov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Functions and operators of system (22–24)

Appendix 1: Functions and operators of system (22–24)

The functions and the operators of Eqs. (2224) are the following:

$${\widetilde{Q}}_{j}^{(i)}\left(\cdot \right)=\frac{{\widetilde{Y}}_{j2}^{\left(i\right)}}{{\delta }_{i}}\left(\cdot \right);\quad i=1,\dots ,N;j=\mathrm{1,2};3;$$
$${\widetilde{Q}}_{4}^{(i)}\left({\widetilde{u}}_{i},{\widetilde{v}}_{i},{\widetilde{w}}_{i}\right)=\frac{1}{{\delta }_{i}}\left\{{\alpha }_{i}^{2}\frac{{\partial }^{2}}{{\partial \eta }^{2}}\sum_{j=1}^{3}{\widetilde{X}}_{1j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)}+\right.\frac{{\partial }^{2}}{{\partial \theta }^{2}}\sum_{j=1}^{3}{\widetilde{X}}_{2j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)}+\left.\frac{2{\alpha }_{i}{\partial }^{2}}{\partial \theta \partial \eta }\sum_{j=1}^{3}{\widetilde{X}}_{3j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)}\right\};$$
$${\widetilde{\mathfrak{L}}}_{j}^{\left(i\right)}\left(\cdot \right)={\alpha }_{1}\frac{\partial }{\partial \eta }\left[{\widetilde{Y}}_{1j}^{\left(i\right)}(\cdot )\right]+\frac{\partial }{{\delta }_{i}\partial \theta }\left[{\widetilde{Y}}_{j3}^{\left(i\right)}(\cdot )\right];\quad i=1,\dots ,N;j=1,\dots ,3;$$
$${\widetilde{\mathfrak{L}}}_{4}^{\left(i\right)}\left({\widetilde{u}}_{i},{\widetilde{v}}_{i},{\widetilde{w}}_{i}\right)=\frac{1}{2{\delta }_{i}}\frac{\partial }{\partial \theta }\sum_{j=1}^{3}{\widetilde{X}}_{3j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)};$$
$${\widetilde{P}}_{j}^{\left(i\right)}\left(\cdot \right)=\frac{\partial }{{\delta }_{i}\partial \theta }\left[{\widetilde{Y}}_{2j}^{\left(i\right)}(\cdot )\right]+{\alpha }_{1}\frac{\partial }{\partial \eta }\left[{\widetilde{Y}}_{j3}^{\left(i\right)}(\cdot )\right];i=1,\dots ,N;j=\mathrm{1,2},3;$$
$${\widetilde{P}}_{4}^{\left(i\right)}\left({\widetilde{u}}_{i},{\widetilde{v}}_{i},{\widetilde{w}}_{i}\right)=\frac{1}{{\delta }_{i}}\left\{\frac{\partial }{\partial \theta }\sum_{j=1}^{3}{\widetilde{X}}_{2j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)}+\frac{3{\alpha }_{i}}{2}\left.\frac{\partial }{\partial \eta }\sum_{j=1}^{3}{\widetilde{X}}_{3j}^{\left(i\right)}{\widetilde{k}}_{j}^{\left(i\right)}\right\}\right.;$$
$${\widetilde{F}}_{W}^{\left(i\right)}=-{\widetilde{Q}}_{1}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,X,0}^{\left(NL\right)}\right)-{\widetilde{Q}}_{2}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,\theta ,0}^{\left(NL\right)}\right)-{\widetilde{Q}}_{3}^{\left(i\right)}\left({\widetilde{\gamma }}_{i,X\theta ,0}^{\left(NL\right)}\right)+\widetilde{\Lambda }\left\{{\alpha }_{1}{\alpha }_{i}\frac{\partial }{\partial \eta }\right.\left({\widetilde{N}}_{XX}^{\left(i\right)}\frac{\partial {\widetilde{w}}_{i}}{\partial \eta }\right)+\frac{\partial }{{\delta }_{i}\partial \theta }\left[{\widetilde{N}}_{\theta \theta }^{\left(i\right)}\left(\frac{\partial {\widetilde{w}}_{i}}{\partial \theta }-{\widetilde{v}}_{i}\right)\right]+{\alpha }_{1}\frac{\partial }{\partial \eta }\left[{\widetilde{N}}_{X\theta }^{\left(i\right)}\left(\frac{\partial {\widetilde{w}}_{i}}{\partial \theta }-{\widetilde{v}}_{i}\right)\right]+{\alpha }_{1}\left.\frac{\partial }{\partial \theta }\left({\widetilde{N}}_{X\theta }^{\left(i\right)}\frac{\partial {\widetilde{w}}_{i}}{\partial \eta }\right)\right\};$$
$${\widetilde{F}}_{U}^{\left(i\right)}={\widetilde{\mathfrak{L}}}_{1}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,X,0}^{\left(NL\right)}\right)+{\widetilde{\mathfrak{L}}}_{2}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,\theta ,0}^{\left(NL\right)}\right)+{\widetilde{\mathfrak{L}}}_{3}^{\left(i\right)}\left({\widetilde{\gamma }}_{i,X\theta ,0}^{\left(NL\right)}\right)-\widetilde{\Lambda }\left.\left\{\frac{\partial }{\partial \theta }\left[\frac{{\widetilde{N}}_{XX}^{(i)}+{\widetilde{N}}_{\theta \theta }^{(i)}}{4{\delta }_{i}}\right.\right.\left.\left({\alpha }_{i}\frac{\partial {\widetilde{v}}_{i}}{\partial \eta }-\frac{\partial {\widetilde{u}}_{i}}{\partial \theta }\right)\right]\right\};$$
$${\widetilde{F}}_{V}^{\left(i\right)}={\widetilde{P}}_{1}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,X,0}^{\left(NL\right)}\right)+{\widetilde{P}}_{2}^{\left(i\right)}\left({\widetilde{\varepsilon }}_{i,\theta ,0}^{\left(NL\right)}\right)+{\widetilde{P}}_{3}^{\left(i\right)}\left({\widetilde{\gamma }}_{i,X\theta ,0}^{\left(NL\right)}\right)+\widetilde{\Lambda }\left.\left\{{\alpha }_{1}\frac{\partial }{\partial \eta }\left[\left.\frac{{\widetilde{N}}_{XX}^{(i)}+{\widetilde{N}}_{\theta \theta }^{(i)}}{4}\left({\alpha }_{i}\frac{\partial {\widetilde{v}}_{i}}{\partial \eta }-\frac{\partial {\widetilde{u}}_{i}}{\partial \theta }\right)\right]+\frac{{\widetilde{N}}_{\theta \theta }^{(i)}}{{\delta }_{i}}\left(\frac{\partial {\widetilde{w}}_{i}}{\partial \theta }-{\widetilde{v}}_{i}\right)+{\alpha }_{1}{\widetilde{N}}_{X\theta }^{(i)}\frac{\partial {\widetilde{w}}_{i}}{\partial \eta }\right.\right.\right\}.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramov, K., Grebennik, I. Nonlinear modal analysis of multi-walled nanotube oscillations using nonlocal anisotropic elastic shell model. Nonlinear Dyn 111, 21587–21610 (2023). https://doi.org/10.1007/s11071-023-08978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08978-7

Keywords

Navigation