Skip to main content
Log in

Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in soliton theory and nonlinear waves

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In soliton theory and nonlinear waves, this research proposes a new Painlevé integrable generalized (3+1)-D evolution equation. It demonstrates the Painlevé test that claims the integrability of the proposed equation and employs Cole–Hopf transformations to generate the trilinear equation in an auxiliary function that governs the higher-order rogue wave and dispersive-soliton solutions via the symbolic computation approach and dispersive-soliton assumption, respectively. Center-controlled parameters in rogue waves show the different dynamical structures with several other parameters. We obtain solutions for rogue waves up to third-order using direct symbolic analysis with appropriate center parameters and other parameters using a generalized procedure for rogue waves. We assume the dispersive-soliton solution, inspired by Hirota’s direct techniques to create dispersive-soliton solutions up to the third order. By applying the symbolic software Mathematica, we demonstrate the dynamical structures for rogue waves with diverse center parameters and dispersive solitons using dispersion relation to showcase the interaction behavior of the solitons. Dispersive solitons and rogue waves are fascinating phenomena that appear in diverse areas of physics, such as optical fibers, nonlinear waves, dusty plasma physics, nonlinear dynamics, and other engineering and sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This study has not made use of any data from other sources.

References

  1. Zhang, R.F., Bilige, S., et al.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  2. Kumar, S., Mohan, B.: A study of multi-soliton solu- tions, breather, lumps, and their interactions for Kadomtsev- Petviashvili equation with variable time coefficient using Hirota method. Phys. Scr. 96(12), 125255 (2021)

    Google Scholar 

  3. Wazwaz, A.M., Hammad, M.A., El-Tantawy, S.A.: Bright and dark optical solitons for (3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  4. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022)

    Google Scholar 

  5. Nikolkina, I., Didenkulova, I.: Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 11, 2913–2924 (2011)

    Google Scholar 

  6. Residori, S., Onorato, M., Bortolozzo, U., Arecchi, F.T.: Rogue waves: a unique approach to multidisciplinary physics. Contemp. Phys. 58(1), 53–69 (2017)

    Google Scholar 

  7. Wang, X., Wang, L., Liu, C., Guo, B., Wei, J.: Rogue waves, semirational rogue waves and W-shaped solitons in the three-level coupled Maxwell–Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 107, 106172 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, S., Li, Y.: Higher-order rogue waves with controllable fission and asymmetry localized in a (3 + 1)-dimensional generalized Boussinesq equation. Commun. Theor. Phys. 75, 015003 (2023)

    MathSciNet  MATH  Google Scholar 

  9. Wang, X., Wei, J., Geng, X.: Rational solutions for a (3+1)-dimensional nonlinear evolution equation. Commun. Nonlinear Sci. Numer. Simulat. 83, 105116 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Li, L., Xie, Y.: Rogue wave solutions of the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Chaos Soli Fract. 147, 110935 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Kumar, S., Mohan, B., Kumar, R.: Newly formed center-controlled rogue wave and lump solutions of a generalized (3+1)-dimensional KdV-BBM equation via symbolic computation approach. Phys. Scr. 98(8), 085237 (2023)

    Google Scholar 

  12. Chen, Y., Yu, Z.B., Zou, L.: The lump, lump off and rogue wave solutions of a (2+1)-dimensional breaking soliton equation. Nonlinear Dyn. 111, 591–602 (2023)

    Google Scholar 

  13. Cao, Y., Tian, H., Ghanbari, B.: On constructing of multiple rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation. Phys. Scr. 96, 035226 (2021)

    Google Scholar 

  14. Zhang, H.Y., Zhang, Y.F.: Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation. Appl. Math. Lett. 102, 106145 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Li, L., Xie, Y., Mei, L.: Multiple-order rogue waves for the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 117, 107079 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  17. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Elboree, M.K.: Higher order rogue waves for the (3 + 1)-dimensional Jimbo-Miwa equation. Int. J. Nonlinear Sci. Numer. Simul. 23, 7–8 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear differential ordinary and partial equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scr. 97, 035201 (2022)

    Google Scholar 

  22. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  24. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  25. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Wazwaz, A.M.: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1466–1472 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Huang, Z.R., Tian, B., Zhen, H.L., et al.: Bäcklund transformations and soliton solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Nonlinear Dyn. 80, 1–7 (2015)

    MATH  Google Scholar 

  28. Yan, X.W., Tian, S.F., Dong, M.J., et al.: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)(3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 92, 709–720 (2018)

    MATH  Google Scholar 

  29. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  30. Zhang, R., Bilige, S., Chaolu, T.: Fractal Solitons, Arbitrary Function Solutions, Exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

    Google Scholar 

  32. Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  33. Wazwaz, A.M.: The Hirota’s direct method for multiple soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201, 489–503 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Jiang, Y., Tian, B., Wang, P., et al.: Bilinear form and soliton interactions for the modified Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Nonlinear Dyn. 73, 1343–1352 (2013)

    MathSciNet  Google Scholar 

  35. Kumar, S., Mohan, B.: A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota Bilinear technique. Phys. Scr. 97, 125214 (2022)

    Google Scholar 

  36. Kumar, S., Dhiman, S.K., Chauhan, A.: Analysis of Lie invariance, analytical solutions, conservation laws, and a variety of wave profiles for the (2+1)-dimensional Riemann wave model arising from ocean tsunamis and seismic sea waves. Eur. Phys. J. Plus 138, 622 (2023)

    Google Scholar 

  37. Hamid, I., Kumar, S.: Symbolic computation and Novel solitons, traveling waves and soliton-like solutions for the highly nonlinear (2+1)-dimensional Schrödinger equation in the anomalous dispersion regime via newly proposed modified approach. Opt. Quant. Electron. 55, 755 (2023)

    Google Scholar 

  38. Kumar, S., Ma, W.X., Dhiman, S.K., et al.: Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations. Eur. Phys. J. Plus 138, 434 (2023)

    Google Scholar 

  39. Kumar, P., Kumar, D.: Multi-peak soliton solutions of the generalized breaking soliton equation. Phys. Scr. 97, 105203 (2022)

    Google Scholar 

  40. Guan, X., Liu, W., Zhou, Q., et al.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Google Scholar 

  41. Li, H.M., Tian, B., Xie, X.Y.: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 86, 369–380 (2016)

    Google Scholar 

  42. Wang, X., Wei, J.: Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrödinger equation. Appl. Math. Lett. 130, 107998 (2022)

    MATH  Google Scholar 

  43. Wei, J., Wang, X., Geng, X.: Periodic and rational solutions of the reduced Maxwell-Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 59, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Lan, Z.Z.: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 107, 106382 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Yang, X., Zhang, Z., Wazwaz, A.M., Wang, Z.: A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation. Phys. Lett. A 449, 128355 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Kumar, S., Mohan, B.: A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas. Nonlinear Dyn. 111, 16395–16405 (2023)

    Google Scholar 

  47. Zhaqilao: Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 377(42), 3021–3026 (2013)

  48. Zhaqilao: A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Computers and Mathematics with Applications 75(9), 3331-3342, (2018)

Download references

Acknowledgements

The authors would like to express their appreciation to the Editor and the referees for their insightful and informative comments. The author, Sachin Kumar, wishes to acknowledge the Institution of Eminence, University of Delhi, India, for financial support in carrying out this research through the Faculty Research Programme Grant - IoE via Ref. No./IoE/2023-24/12/FRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, B., Kumar, S. & Kumar, R. Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in soliton theory and nonlinear waves. Nonlinear Dyn 111, 20275–20288 (2023). https://doi.org/10.1007/s11071-023-08938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08938-1

Keywords

Navigation