Skip to main content
Log in

A novel vari-potential bistable nonlinear energy sink for improved vibration suppression: numerical and experimental study

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel vari-potential energy bistable nonlinear energy sink (VBNES) is proposed in this paper. By introducing a pair of tuned oscillators (TOs) to dynamically adjust the potential barrier height of the BNES, the excitation threshold of the strong modulated response (SMR) is reduced and its vibration suppression ability is enhanced, especially under ultra-low and wide-amplitude excitation. Firstly, the dimensionless theoretical models of the VBNES and the fixed-potential BNES (FBNES) are constructed by the Lagrange equation. The actual response trajectories on the potential energy surface and restoring force surface are numerically tracked to verify the benefit of variable potential energy effect on vibration suppression. The dynamical characteristics of the typical target energy transfer (TET) mechanisms of the VBNES and their contributions to energy dissipation are analyzed. Furthermore, the transient responses and energy dissipation rates of the VBNES and FBNES with optimal stiffness under impact excitation are compared. The results indicate that the VBNES has higher impact vibration absorption efficiency and stronger robustness. The influences of system parameters on energy dissipation rate are analyzed. Finally, the experimental and numerical studies under harmonic excitation are carried out. The experimental results verify the correctness of the theoretical model. The complex dynamics under numerical frequency and amplitude sweeps demonstrate that the VBNES has a lower SMR excitation threshold and broadband vibration suppression ability. This work provides a novel and valuable NES model and numerical evidence for low-frequency and low-amplitude vibration suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

No datasets are associated with this manuscript. The datasets used for generating the plots and results during the current study can be directly obtained from the numerical simulation of the related mathematical equations in the manuscript.

References

  1. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators part I—Dynamics of the underlying Hamiltonian systems. J. Appl. Mech. ASME. 68(1), 33–44 (2001). https://doi.org/10.1115/1.1345524

    Article  MATH  Google Scholar 

  2. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: Part II—Resonance capture. J. Appl. Mech. ASME. 68(1), 42–48 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D Nonlinear Phenom. 204(1–2), 41–69 (2005). https://doi.org/10.1016/j.physd.2005.03.014

    Article  MathSciNet  MATH  Google Scholar 

  4. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008). https://doi.org/10.1007/s11071-006-9167-0

    Article  MATH  Google Scholar 

  5. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1–2), 1–22 (2016). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  6. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. ASME. (2014). https://doi.org/10.1115/1.4026432

    Article  Google Scholar 

  7. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012). https://doi.org/10.1016/j.jsv.2012.05.021

    Article  Google Scholar 

  8. Li, W.K., Wierschem, N.E., Li, X.H., Yang, T.J., Brennan, M.J.: Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dyn. 100(2), 951–971 (2020). https://doi.org/10.1007/s11071-020-05571-0

    Article  Google Scholar 

  9. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015). https://doi.org/10.1016/j.jsv.2015.08.020

    Article  Google Scholar 

  10. Farid, M., Gendelman, O.V., Babitsky, V.I.: Dynamics of a hybrid vibro-impact nonlinear energy sink. Z. Angew. Math. Mech. (2019). https://doi.org/10.1002/zamm.201800341

    Article  Google Scholar 

  11. Youssef, B., Leine, R.I.: A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode. J. Sound Vib. (2021). https://doi.org/10.1016/j.jsv.2021.116043

    Article  Google Scholar 

  12. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. ASME. (2012). https://doi.org/10.1115/1.4005402

    Article  Google Scholar 

  13. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non-Lin. Mech. (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  14. Yao, H.L., Cao, Y.B., Wang, Y.W., Wen, B.C.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. (2019). https://doi.org/10.1016/j.jsv.2019.114971

    Article  Google Scholar 

  15. Chen, J.E., Sun, M., Hu, W.H., Zhang, J.H., Wei, Z.C.: Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dyn. 100(1), 255–267 (2020). https://doi.org/10.1007/s11071-020-05528-3

    Article  Google Scholar 

  16. Wang, J.J., Wierschem, N., Spencer, B.F., Lu, X.L.: Experimental study of track nonlinear energy sinks for dynamic response reduction. Eng. Struct. 94, 9–15 (2015). https://doi.org/10.1016/j.engstruct.2015.03.007

    Article  Google Scholar 

  17. Wang, J.J., Wierschem, N., Spencer, B.F., Lu, X.L.: Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink. Earthq. Eng. Struct. D. 45(4), 635–652 (2016). https://doi.org/10.1002/eqe.2677

    Article  Google Scholar 

  18. Kong, X.R., Li, H.Q., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018). https://doi.org/10.1007/s11071-017-3906-2

    Article  Google Scholar 

  19. Gendelman, O.V., Lamarque, C.H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos, Soliton Fract. 24(2), 501–509 (2005). https://doi.org/10.1016/j.chaos.2004.09.088

    Article  MathSciNet  MATH  Google Scholar 

  20. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. ASME. DOI (2014). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  22. Romeo, F., Sigalov, G.B.L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. Comput. Nonlin. Dyn. 10(1), 011007 (2015). https://doi.org/10.1115/1.4027224

    Article  Google Scholar 

  23. Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25(5), 053109 (2015). https://doi.org/10.1063/1.4921193

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, D.R., Harne, R.L., Wang, K.W.: A disturbance cancellation perspective on vibration control using a bistable snap-through attachment. J. Vib. Acoust. ASME. (2014). https://doi.org/10.1115/1.4026673

    Article  Google Scholar 

  25. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016). https://doi.org/10.1016/j.jsv.2016.03.008

    Article  Google Scholar 

  26. Fang, X., Wen, J.H., Yin, J.F., Yu, D.L.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  27. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  28. Qiu, D.H., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  29. Foroutan, K., Jalali, A., Ahmadi, H.: Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. J. Sound Vib. 447, 155–169 (2019). https://doi.org/10.1016/j.jsv.2019.01.030

    Article  Google Scholar 

  30. Mohammad, A., Al-Shudeifat, S.A.S.: Frequency-energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator. Nonlinear Dyn. 105(4), 2877–2898 (2021). https://doi.org/10.1007/s11071-021-06802-8

    Article  MathSciNet  Google Scholar 

  31. Wu, Z., Seguy, S., Paredes, M.: Basic constraints for design optimization of cubic and bistable nonlinear Energy sink. J. Vib. Acoust. ASME. (2022). https://doi.org/10.1115/1.4051548

    Article  Google Scholar 

  32. Wu, Z., Seguy, S., Paredes, M.: Estimation of energy pumping time in bistable nonlinear energy sink and experimental validation. J. Vib. Acoust. ASME. (2022). https://doi.org/10.1115/1.4054253

    Article  Google Scholar 

  33. Li, S., Wu, H., Chen, J.: Global dynamics and performance of vibration reduction for a new vibro-impact bistable nonlinear energy sink. J. Mech. Int. Non-Lin. (2022). https://doi.org/10.1016/j.ijnonlinmec.2021.103891

    Article  Google Scholar 

  34. Zeng, Y.-C., Ding, H., Du, R.-H., Chen, L.-Q.: Micro-amplitude vibration suppression of a bistable nonlinear energy sink constructed by a buckling beam. Nonlinear Dyn. 108(4), 3185–3207 (2022). https://doi.org/10.1007/s11071-022-07378-7

    Article  Google Scholar 

  35. Li, S., Zhou, X., Chen, J.: Hamiltonian dynamics and targeted energy transfer of a grounded bistable nonlinear energy sink. Numer. Simul. Nonlinear Sci. (2023). https://doi.org/10.1016/j.cnsns.2022.106898

    Article  MATH  Google Scholar 

  36. Yao, H.L., Wang, Y.W., Xie, L.Q., Wen, B.C.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2019.106546

    Article  Google Scholar 

  37. Xia, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5066329

    Article  Google Scholar 

  38. Li, H., Li, A., Kong, X.: Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103(2), 1475–1497 (2021). https://doi.org/10.1007/s11071-020-06178-1

    Article  Google Scholar 

  39. Chen, Y.Y., Qian, Z.C., Zhao, W., Chang, C.M.: A magnetic bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2020.115233

    Article  Google Scholar 

  40. Chen, Y., Su, W., Tesfamariam, S., Qian, Z., Zhao, W., Yang, Z., et al.: Experimental study of magnetic bistable nonlinear energy sink for structural seismic control. Soil Dyn. Earthq. Eng. (2023). https://doi.org/10.1016/j.soildyn.2022.107572

    Article  Google Scholar 

  41. Zuo, H., Zhu, S.: Bistable track nonlinear energy sinks with nonlinear viscous damping for impulsive and seismic control of frame structures. Eng. Struct. (2022). https://doi.org/10.1016/j.engstruct.2022.114982

    Article  Google Scholar 

  42. Chen, Y.Y., Qian, Z.C., Chen, K., Tan, P., Tesfamariam, S.: Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction. Struct. Control Hlth. (2019). https://doi.org/10.1002/stc.2437

    Article  Google Scholar 

  43. Wang, J., Zhang, C., Li, H., Liu, Z.: A vertical-vibro-impact-enhanced track bistable nonlinear energy sink for robust and comprehensive control of structures. Struct. Control Hlth. (2022). https://doi.org/10.1002/stc.2931

    Article  Google Scholar 

  44. Wang, J., Zhang, C., Li, H., Liu, Z.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. (2021). https://doi.org/10.1016/j.engstruct.2021.112184

    Article  Google Scholar 

  45. Chen, Y.-Y., Su, W.-T., Tesfamariam, S., Qian, Z.-C., Zhao, W., Shen, C.-Y., et al.: Experimental testing and system identification of the sliding bistable nonlinear energy sink implemented to a four-story structure model subjected to earthquake excitation. J. Build. Eng. (2022). https://doi.org/10.1016/j.jobe.2022.105226

    Article  Google Scholar 

  46. Raze, G., Kerschen, G.: Multimodal vibration damping of nonlinear structures using multiple nonlinear absorbers. Int. J. Non-Lin. Mech. (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103308

    Article  MATH  Google Scholar 

  47. Snoun, C., Bergeot, B., Berger, S.: Prediction of the dynamic behavior of an uncertain friction system coupled to nonlinear energy sinks using a multi-element generalized polynomial chaos approach. Eur. J. Mech. A-solid. (2020). https://doi.org/10.1016/j.euromechsol.2019.103917

    Article  MathSciNet  MATH  Google Scholar 

  48. Saeed, A.S., Al-Shudeifat, M.A., Cantwell, W.J., Vakakis, A.F.: Two-dimensional nonlinear energy sink for effective passive seismic mitigation. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1016/j.cnsns.2021.105787

    Article  MATH  Google Scholar 

  49. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012). https://doi.org/10.1007/s11071-012-0597-6

    Article  MathSciNet  Google Scholar 

  50. Zang, J., Zhang, Y.W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98(2), 889–906 (2019). https://doi.org/10.1007/s11071-019-05233-w

    Article  Google Scholar 

  51. Chen, J.E., He, W., Zhang, W., Yao, M.H., Liu, J., Sun, M.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91(2), 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

    Article  Google Scholar 

  52. Rezaei, M., Talebitooti, R., Liao, W.-H.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106618

    Article  Google Scholar 

  53. Rezaei, M., Talebitooti, R., Liao, W.-H.: Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: numerical and analytical approaches. Energy (2022). https://doi.org/10.1016/j.energy.2021.122376

    Article  Google Scholar 

  54. Nguyen, M.S., Yoon, Y.-J., Kwon, O., Kim, P.: Lowering the potential barrier of a bistable energy harvester with mechanically rectified motion of an auxiliary magnet oscillator. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4994111

    Article  Google Scholar 

  55. Fang, S., Chen, K., Xing, J., Zhou, S., Liao, W.-H.: Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106838

    Article  Google Scholar 

  56. Chiacchiari, S., Romeo, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. Int. J. Non-Lin. Mech. 94, 84–97 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.007

    Article  Google Scholar 

  57. Labetoulle, A., Ture, S.A., Gourdon, E.: Detection of different dynamics of two coupled oscillators including a time-dependent cubic nonlinearity. Acta Mech. 233(1), 259–290 (2022). https://doi.org/10.1007/s00707-021-03119-w

    Article  MathSciNet  MATH  Google Scholar 

  58. Ture, S.A., Manevitch, L.I., Lamarque, C.-H.: Analysis of the transient behavior in a two dof nonlinear system. Chaos, Soliton Fract. 44(6), 450–463 (2011). https://doi.org/10.1016/j.chaos.2011.03.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 11902207), Natural Science Foundation of Hebei Province, (Grant No. A2020210018), Hebei Province Foreign Special Talent Introduction Plan Project, Postdoctoral grant project supported by China Scholarship Council and Chongqing Engineering Research Center for Advanced Intelligent Manufacturing Technology, (Grant No. ZNZZXDJS202008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Chen, L., Zhou, S. et al. A novel vari-potential bistable nonlinear energy sink for improved vibration suppression: numerical and experimental study. Nonlinear Dyn 111, 19763–19790 (2023). https://doi.org/10.1007/s11071-023-08910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08910-z

Keywords

Navigation