Skip to main content
Log in

Exact N-soliton solutions and dynamics of two types of matrix nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamical properties of the optical solitons in two types of matrix nonlinear Schrödin-ger (NLS) equation are studied by Riemann–Hilbert method. Firstly, the inverse scattering transform of the matrix NLS equation is investigated and the corresponding Riemann–Hilbert problem is established. Then, by solving the Riemann–Hilbert problem of discrete spectrum, the N-soliton solutions of the matrix NLS equations are obtained. Finally, the single-soliton solution, two-soliton solution and three-soliton solution of the matrix NLS equations are attained. It is proved that the two-soliton solution is decomposed into two single-soliton solutions when the time approaches infinity and the multiple solitons will overlap and form a bound state advancing at the same velocity when they have the same velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Xinyu Wang], upon reasonable request.

References

  1. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (2018)

    Article  Google Scholar 

  2. Akhmediev, N., Karlsson, M.: Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602 (1995)

    Article  Google Scholar 

  3. Roy, S., Bhadra, S.K., Agrawal, G.P.: Perturbation of higher-order solitons by fourth-order dispersion in optical fibers. Opt. Commun. 282, 3798–3803 (2009)

    Article  Google Scholar 

  4. Christov, I.P.: Enhanced generation of attosecond pulses in dispersion-controlled hollow-core fiber. Phys. Rev. A 60, 3244 (1999)

    Article  Google Scholar 

  5. Kanna, T., Vijayajayanthi, M., Lakshmanan, M.: Coherently coupled bright optical solitons and their collisions. J. Phys. A: Math. Theor. 43, 434018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81, 733–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, Q., Ekici, M., Sonmezoglu, A.: Exact chirped singular soliton solutions of Triki-Biswas equation. Optik 181, 338–342 (2019)

    Article  Google Scholar 

  8. Daoui, A.K., Azzouzi, F., Triki, H., Biswas, A., Zhou, Q., Moshokoa, S.P., Belic, M.: Propagation of chirped gray optical dips in nonlinear metamaterials. Opt. Commun. 430, 461–466 (2019)

    Article  Google Scholar 

  9. Triki, H., Alqahtani, R.T., Zhou, Q., Biswas, A.: New enveloppe solitons for Gerdjikov–Ivanov model in nonlinear optics. Superlattices Microstruct. 111, 326–334 (2017)

    Article  Google Scholar 

  10. Szańkowski, P., Trippenbach, M., Infeld, E., Rowlands, G.: Oscillating solitons in a three-component Bose–Einstein condensate. Phys. Rev. Lett. 105, 125302 (2010)

    Article  Google Scholar 

  11. Szańkowski, P., Tripenbach, M., Infeld, E., Rowlands, G.: Class of compact entities in three-component Bose–Einstein condensates. Phys. Rev. A 83, 013626 (2011)

    Article  Google Scholar 

  12. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Am. Math. Soc. 146(4), 1713–1729 (2018)

    Article  MATH  Google Scholar 

  13. Feng, B.F., Luo, X.D., Ablowitz, M.J.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31(12), 5385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37(4), 1136–1142 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)

    Article  Google Scholar 

  16. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    Article  MATH  Google Scholar 

  17. Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. 111, 603–617 (2023)

    Article  Google Scholar 

  18. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Article  Google Scholar 

  19. Szańkowski, P., Trippenbach, M., Infeld, E.: An extended representation of three-spin-component Bose–Einstein condensate solitons. Phys. D 241, 1811 (2012)

    Article  MATH  Google Scholar 

  20. Biswas, A., Ekici, M., Sonomezoglu, A., Belic, M.: Highly dispersive optical solitons with cubic-quintic-septic law by exp-expansion. Optik 186, 321–325 (2019)

    Article  Google Scholar 

  21. Biswas, A., Ekici, M., Sonomezoglu, A., Belic, M.: Highly dispersive optical solitons with cubic-quintic-septic law by extended Jacobi’s elliptic function expansion. Optik 183, 571–578 (2019)

    Article  Google Scholar 

  22. Biswas, A., Ekici, M., Sonomezoglu, A., Belic, M.: Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. Optik 182, 897–906 (2019)

    Article  Google Scholar 

  23. Biswas, A., Asma, M., Kara, A.H., Ekici, M., Zayed, E.M.E., Alzahrani, A.K., Belic, M.R.: Soliton perturbation and conservation laws in magneto-optic waveguides with parabolic law nonlinearity. Optik 220, 165196 (2020)

    Article  Google Scholar 

  24. Biswas, A., Milovic, D., Kohl, R.: Optical soliton perturbation in a log-law medium with full nonlinearity by He’s semi-inverse variational principle. Inverse Probl. Sci. Eng. 20(2), 227–232 (2012)

    Article  MATH  Google Scholar 

  25. Dai, C.Q., Xu, Y.J.: Spatial bright and dark similaritons on cnoidal wave backgrounds in 2D waveguides with different distributed transverse diffractions. Opt. Commun. 311, 216–221 (2014)

    Article  Google Scholar 

  26. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  27. Zhou, Q., Biswas, A.: Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlattices Microstruct. 109, 588–598 (2017)

    Article  Google Scholar 

  28. Das, A., Biswas, A., Ekici, M., Zhou, Q., Alshomrani, A.S., Beli, M.R.: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chin. J. Phys. 61, 255–261 (2019)

    Article  MathSciNet  Google Scholar 

  29. Kumar, S., Zhou, Q., Liu, Q.J.: Invariant traveling wave solutions of parity-time-symmetric mixed linear-nonlinear optical lattices with three types of nonlinearity. Laser Phys. 29, 045401 (2019)

    Article  Google Scholar 

  30. Tovbis, A., Venakides, S., Zhou, X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 57, 877–985 (2004)

    Article  MATH  Google Scholar 

  31. Bilman, D., Buckingham, R., Wang, D.S.: Far-field asymptotics for multiple-pole solitons inthelarge-order limit. J. Differ Equ. 297, 320–369 (2021)

    Article  MATH  Google Scholar 

  32. Feng, B.F.: General N-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47(35), 355203 (2014)

    Article  MATH  Google Scholar 

  33. Wazwaz, A.M.: Linear and Nonlinear Integral Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  34. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262(1), 506–558 (2017)

    Article  MATH  Google Scholar 

  35. Ma, W.X.: Riemann–Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, W.X.: Riemann–Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies. Phys. D Nonlinear Phenom. 430, 133078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, L., Li, Z., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and nonlinear modulation instability in spinor Bose–Einstein condensates. Phys. Rev. A 72, 033611 (2005)

  38. Ma, W.X.: Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. Proc. Am. Math. Soc. 149(1), 251–263 (2021)

    Article  MATH  Google Scholar 

  39. Doktorov, E.V., Wang, J.D., Yang, J.K.: Perturbation theory for bright spinor Bose–Einstein condensate solitons. Phys. Rev. A 77, 043617 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Wang.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhi, H. Exact N-soliton solutions and dynamics of two types of matrix nonlinear Schrödinger equation. Nonlinear Dyn 111, 21191–21206 (2023). https://doi.org/10.1007/s11071-023-08903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08903-y

Keywords

Navigation