Skip to main content
Log in

Steering control and stability analysis for an autonomous bicycle: part I—theoretical framework and simulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical and experimental study on the dynamics and stability of an autonomous bicycle. The first part of the paper proposes a theoretical framework for dynamics modeling and stability analysis of a controlled bicycle. The autonomous bicycle is driven by maintaining a constant angular speed of the rear wheel and is controlled by a linear control law between the steer and lean angles of the bicycle. Noting that the control laws can serve as two servo-constraints imposed on the bicycle system, we use the tools of geometric mechanics to reduce the dynamics of the autonomous bicycle into a two-dimensional dynamic system. Theoretical analysis shows that the two-dimensional dynamic system exhibits important mathematical properties, which can be used to determine the control parameters guaranteeing the motion stability of the bicycle. Based on the stability analysis, we demonstrate that the control law not only enhances the stability of the bicycle in uniform straight motion, but also allows it to be stabilized in uniform circular motion. Additionally, this paper provides an explanation for interesting phenomena observed in rider-controlled bicycles, such as the driving rules of steering toward a fall and counter-steering behavior. Furthermore, we conducted numerical simulations using the physical parameters of a self-designed autonomous bicycle to validate the theoretical development. The second part of the paper investigates how uncertainties in the bicycle system affect the stability of relative equilibria, and presents experimental results observed from the autonomous bicycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly available since the authors need to do further research on them, but are available from the corresponding author on reasonable request.

Notes

  1. The bicycle system is a nonholonomic Voronets’ system [49].

  2. In the following paragraph, a single term containing repeated indices (no more than twice) always implies summation of that term over all the values of the index.

References

  1. Yi, J., Song, D., Levandowski, A., Jayasuriya, S.: Trajectory tracking and balance stabilization control of autonomous motorcycles. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2583–2589. IEEE (2006)

  2. Sharp, R.S.: On the stability and control of the bicycle. Appl. Mech. Rev. 61(6), 60803 (2008)

    Article  Google Scholar 

  3. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Whipple, F.J.W.: The stability of the motion of a bicycle. Q. J. Pure Appl. Math. 30(120), 312–348 (1899)

    MATH  Google Scholar 

  5. Carvallo, E.: Théorie du movement du monocycle et de la bicyclette. Gauthier-Villars, Paris (1899)

    MATH  Google Scholar 

  6. Bloch, A.M.: Nonholonomic mechanics. In: Nonholonomic Mechanics and Control, pp. 207–276. Springer (2003)

  7. Zhao, Z., Liu, C.: Contact constraints and dynamical equations in Lagrangian systems. Multibody Syst. Dyn. 38(1), 77–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xiong, J., Wang, N., Liu, C.: Bicycle dynamics and its circular solution on a revolution surface. Acta Mech. Sin. 36(1), 220–233 (2020)

    Article  MathSciNet  Google Scholar 

  9. Xiong, J., Wang, N., Liu, C.: Stability analysis for the Whipple bicycle dynamics. Multibody Syst. Dyn. 48(3), 311–335 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Papadopoulos, J.M.: Bicycle steering dynamics and self-stability: a summary report on work in progress. Technical Report, Cornell University (2007)

  11. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463(2084), 1955–1982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peterson, D.L.: Bicycle dynamics: modelling and experimental validation. PhD Thesis, University of California, Davis (2013)

  13. Zhang, Y., Zhao, G., Li, H.: Multibody dynamic modeling and controlling for unmanned bicycle system. ISA Trans. 118, 174–188 (2021)

    Article  Google Scholar 

  14. Boyer, F., Porez, M., Mauny, J.: Reduced dynamics of the non-holonomic Whipple bicycle. J. Nonlinear Sci. 28(3), 943–983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiong, J., Liu, C.: Symmetry and relative equilibria of a bicycle system moving on a surface of revolution. Nonlinear Dyn. 106(4), 2859–2878 (2021)

    Article  Google Scholar 

  16. Sharp, R.S.: Optimal stabilization and path-following controls for a bicycle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221(4), 415–427 (2007)

    Google Scholar 

  17. Schwab, A.L., Kooijman, J.D.G., Meijaard, J.P.: Some recent developments in bicycle dynamics and control. In: 4th European Conference on Structural Control, ECSC 2008, pp. 695–702. Russian Academy of Sciences (2008)

  18. Hashemnia, S., Shariat Panahi, M., Mahjoob, M.J.: Unmanned bicycle balancing via Lyapunov rule-based fuzzy control. Multibody Syst. Dyn. 31(2), 147–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Owczarkowski, A., Horla, D., Kozierski, P., Sadalla, T.: Dynamic modeling and simulation of a bicycle stabilized by LQR control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 907–911. IEEE (2016)

  20. Escalona, J.L., Recuero, A.M.: A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody Syst. Dyn. 27(3), 383–402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schwab, A.L., Meijaard, J.P., Papadopoulos, J.M.: Benchmark results on the linearized equations of motion of an uncontrolled bicycle. J. Mech. Sci. Technol. 19(1), 292–304 (2005)

    Article  Google Scholar 

  22. Kooijman, J.D.G., Schwab, A.L., Meijaard, J.P.: Experimental validation of a model of an uncontrolled bicycle. Multibody Syst. Dyn. 19(1–2), 115–132 (2008)

    Article  MATH  Google Scholar 

  23. Andreo, D., Cerone, V., Dzung, D., Regruto, D.: Experimental results on LPV stabilization of a riderless bicycle. In: 2009 American Control Conference, pp. 3124–3129. IEEE (2009)

  24. Cain, S.M., Perkins, N.C.: Comparison of experimental data to a model for bicycle steady-state turning. Veh. Syst. Dyn. 50(8), 1341–1364 (2012)

    Article  Google Scholar 

  25. Meijaard, J.P., Schwab, A.L.: Linearized equations for an extended bicycle model. In: III European Conference on Computational Mechanics, pp. 772–772. Springer (2006)

  26. Basu-Mandal, P., Chatterjee, A., Papadopoulos, J.M.: Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463(2084), 1983–2003 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Åström, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. Mag. 25(4), 26–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Getz, N.H., Marsden, J.E.: Control for an autonomous bicycle. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1397–1402. IEEE (1995)

  29. Keo, L., Yamakita, M.: Trajectory control for an autonomous bicycle with balancer. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 676–681. IEEE (2008)

  30. Keo, L., Yamakita, M.: Controlling balancer and steering for bicycle stabilization. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4541–4546. IEEE (2009)

  31. Tanaka, Y., Murakami, T.: Self sustaining bicycle robot with steering controller. In: The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC’04, pp. 193–197. IEEE (2004)

  32. Tanaka, Y., Murakami, T.: A study on straight-line tracking and posture control in electric bicycle. IEEE Trans. Ind. Electron. 56(1), 159–168 (2009)

    Article  Google Scholar 

  33. Anjumol, M.A., Jisha, V.R.: Optimal stabilization and straight line tracking of an electric bicycle. In: 2014 International Conference on Power Signals Control and Computations (EPSCICON), pp. 1–6. IEEE (2014)

  34. Limebeer, D.J.N., Sharp, R.S.: Bicycles, motorcycles, and models. IEEE Control Syst. Mag. 26(5), 34–61 (2006)

    Article  Google Scholar 

  35. Huang, C.-F., Tung, Y.-C., Yeh, T.-J.: Balancing control of a robot bicycle with uncertain center of gravity. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5858–5863. IEEE (2017)

  36. Keo, L., Yoshino, K., Kawaguchi, M., Yamakita, M.: Experimental results for stabilizing of a bicycle with a flywheel balancer. In: 2011 IEEE International Conference on Robotics and Automation, pp. 6150–6155. IEEE (2011)

  37. Thanh, B.T., Manukid, P.: Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H\(\infty \) control. Int. J. Adv. Robot. Syst. 5(4), 395–402 (2008)

    Article  Google Scholar 

  38. Lam, P.Y., Sin, T.K.: Gyroscopic stabilization of a self-balancing robot bicycle. Int. J. Autom. Technol. 5(6), 916–923 (2011)

    Article  Google Scholar 

  39. Yetkin, H., Kalouche, S., Vernier, M., Colvin, G., Redmill, K., Ozguner, U.: Gyroscopic stabilization of an unmanned bicycle. In: 2014 American Control Conference, pp. 4549–4554. IEEE (2014)

  40. Xiong, C., Huang, Z., Gu, W., Pan, Q., Liu, Y., Li, X., Wang, E.X.: Static balancing of robotic bicycle through nonlinear modeling and control. In: 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE), pp. 24–28. IEEE (2018)

  41. Baquero-Suárez, M., Cortés-Romero, J., Arcos-Legarda, J., Coral-Enriquez, H.: A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody Syst. Dyn. 45(1), 7–35 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dao, T.-K., Chen, C.-K.: Sliding-mode control for the roll-angle tracking of an unmanned bicycle. Veh. Syst. Dyn. 49(6), 915–930 (2011)

    Article  Google Scholar 

  43. Chen, C.-K., Dao, T.-S.: Fuzzy control for equilibrium and roll-angle tracking of an unmanned bicycle. Multibody Syst. Dyn. 15(4), 325–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ai-Buraiki, O., Thabit, M.B.: Model predictive control design approach for autonomous bicycle kinematics stabilization. In: 22nd Mediterranean Conference on Control and Automation, pp. 380–383. IEEE (2014)

  45. Chu, T.D., Chen, C.K.: Modelling and model predictive control for a bicycle-rider system. Veh. Syst. Dyn. 56(1), 128–149 (2018)

    Article  Google Scholar 

  46. Kozlov, V.V.: The dynamics of systems with servoconstraints. I. Reg. Chaotic Dyn. 20(3), 205–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kozlov, V.V.: The dynamics of systems with servoconstraints. II. Reg. Chaotic Dyn. 20(4), 401–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, E.X., Zou, J., Xue, G., Liu, Y., Li, Y., Fan, Q.: Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Trans. Intell. Transp. Syst. 16(4), 2236–2246 (2015)

    Article  Google Scholar 

  49. Chen, B.: Anal. Dyn. Peking University, Beijing (2012). (in Chinese)

    Google Scholar 

  50. Zenkov, D.V.: Integrability and stability of nonholonomic systems. PhD Thesis, The Ohio State University (1998)

  51. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  52. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotics Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (NSFC:11932001, U2241264) and Key Research Project of Zhejiang Lab (No. G2021NB0AL03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caishan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Coefficients in Eq. (51)

Appendix A: Coefficients in Eq. (51)

The concrete expressions of the coefficients in Eq. (51) are given as follows:

$$\begin{aligned} P_{1,\theta }({\varvec{0}})&=(m_rR_r+m_fR_f+m_sz_s+m_hz_h)g, \\ P_{1,\delta }({\varvec{0}})&=-\frac{gc\cos \lambda }{w}\left( m_sx_s+m_hx_h\right) -m_fgR_f\sin \lambda \\&\quad +m_hg\left( (w+c-x_h)\cos \lambda -z_h\sin \lambda \right) , \\ c_{113}({\varvec{0}})&=0, \;\;\;\;c_{133,\theta }({\varvec{0}})=0, \\ c_{133,\delta }({\varvec{0}})&=-\frac{R_r\cos \lambda }{R_fw}\left( I_{f,yy}R_r + I_{r,yy}R_f \right. \\&\quad \left. + m_fR_rR_f^2 +m_rR_r^2R_f + m_sz_sR_rR_f \right. \\ {}&\quad \left. + m_hz_hR_rR_f\right) , \\ c_{123}({\varvec{0}})&=\frac{c_\lambda }{2wR_f}\left( (I_{h,xx}-I_{h,zz})R_rR_fs_\lambda c_\lambda \right. \\&\quad \left. +2I_{h,xz}R_rR_fc_\lambda ^2 +I_{s,xz}R_rR_f-I_{f,yy}wR_r\right. \\&\quad \left. -m_sR_rR_fz_s(c+x_s)-m_hR_rR_fz_h(c+x_h) \right. \\&\quad \left. -I_{h,xz}R_rR_f-I_{r,yy}cR_f-I_{f,yy}cR_r\right. \\&\quad \left. -m_rcR_r^2R_f-m_fR_rR_f^2(c+w)\right) , \\ m_{11}({\varvec{0}})&=(I_{h,xx}-I_{h,zz})c_\lambda ^2-I_{h,xz}s_{(2\lambda )}+m_fR_f^2\\&\quad +m_rR_r^2+m_sz_s^2+m_hz_h^2+I_{f,xx}+I_{h,zz}\\&\quad +I_{r,xx}+I_{s,xx}, \\ m_{12}({\varvec{0}})&=\frac{1}{w}\left( 2I_{h,xz}cc_\lambda ^3+(I_{h,xx}-I_{h,zz})cs_\lambda c_\lambda ^2\right. \\&\quad +(c(m_hwz_h{-}m_sx_sz_s{-}m_hx_hz_h){+}m_hw^2z_h\\&\quad \left. +c(I_{s,xz}-I_{h,xz})+w(I_{h,xz}-m_hx_hz_h))c_\lambda \right. \\&\quad \left. -w(I_{f,xx}+I_{h,zz}+m_fR_f^2+m_hz_h^2)s_\lambda \right) , \end{aligned}$$

where \(s_{(\cdot )}=\sin (\cdot )\), \(c_{(\cdot )}=\cos (\cdot )\), and g is gravity acceleration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Yu, R. & Liu, C. Steering control and stability analysis for an autonomous bicycle: part I—theoretical framework and simulations. Nonlinear Dyn 111, 16705–16728 (2023). https://doi.org/10.1007/s11071-023-08729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08729-8

Keywords

Navigation