Skip to main content
Log in

A hybrid modeling approach for automotive vibration isolation mounts and shock absorbers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel modeling approach to predict the nonlinear dynamic characteristics of automotive mounts and shock absorbers. Firstly, the concept of the hybrid ANN (artificial neural network)–mechanical modeling approach is presented, which consists of an equivalent mechanical model to characterize the trend of the dynamic characteristic and a neural network model to compensate for the errors introduced by uncaptured nonlinearities. Then experiments are carried out on a rubber mount, a hydraulic mount and a shock absorber to measure their static and dynamic characteristics. Parameters of the equivalent mechanical model are identified, and the neural network model is trained. The hybrid models are validated under harmonic and random excitations with a relative error of less than 8%. Finally, the developed models for the rubber mounts, hydraulic mounts and shock absorbers are integrated into a vehicle model to evaluate the impact of nonlinearity on vehicle ride comfort. The results show that ignoring the nonlinearity of the hydraulic mounts will introduce the largest calculation errors in the analysis of vehicle ride comfort, followed by the shock absorber, and the rubber mount is the smallest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Code availability (software application or custom code). Not applicable.

References

  1. Shangguan, W.-B., Liu, X.-A., Lv, Z.-P., Rakheja, S.: Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level. Mech. Syst. Sig. Process. 76–77, 677–695 (2016). https://doi.org/10.1016/j.ymssp.2016.01.009

    Article  Google Scholar 

  2. Zheng, Y., Shangguan, W.-B., Rakheja, S.: Modeling and performance analysis of convoluted air springs as a function of the number of bellows. Mech. Syst. Sig. Process. 159, 107858 (2021). https://doi.org/10.1016/j.ymssp.2021.107858

    Article  Google Scholar 

  3. Wang, L.-R., Lu, Z.-H., Hagiwara, I.: Analytical analysis approach to nonlinear dynamic characteristics of hydraulically damped rubber mount for vehicle engine. Nonlinear Dyn. 61, 251–264 (2010). https://doi.org/10.1007/s11071-009-9646-1

    Article  MATH  Google Scholar 

  4. Ilbeigi, S., Jahanpour, J., Farshidianfar, A.: A novel scheme for nonlinear displacement-dependent dampers. Nonlinear Dyn. 70, 421–434 (2012). https://doi.org/10.1007/s11071-012-0465-4

    Article  MathSciNet  Google Scholar 

  5. Shangguan, W.-B., Lu, Z.-H.: Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis. J. Sound Vib. 275, 193–221 (2004). https://doi.org/10.1016/S0022-460X(03)00799-5

    Article  Google Scholar 

  6. Shams, M., Ebrahimi, R., Raoufi, A., Jafari, B.J.: CFD-FEA analysis of hydraulic shock absorber valve behavior. Int. J. Auto. Tech. 8, 615–622 (2007). https://doi.org/10.1111/j.1467-8667.2007.00508.x

    Article  Google Scholar 

  7. Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38, 8065–8092 (2001). https://doi.org/10.1016/S0020-7683(01)00026-9

    Article  MATH  Google Scholar 

  8. Lu, L.-Y., Lin, G.-L., Shih, M.-H.: An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation. Eng. Struct. 34, 111–123 (2012). https://doi.org/10.1016/j.engstruct.2011.09.012

    Article  Google Scholar 

  9. Zhang, J., Richards, C.M.: Parameter identification of analytical and experimental rubber isolators represented by Maxwell models. Mech. Syst. Sig. Process. 21, 2814–2832 (2007). https://doi.org/10.1016/j.ymssp.2007.02.007

    Article  Google Scholar 

  10. Sjöberg, M., Kari, L.: Nonlinear isolator dynamics at finite deformations: an effective hyperelastic, fractional derivative, generalized friction model. Nonlinear Dyn. 33, 323–336 (2003). https://doi.org/10.1023/A:1026037703124

    Article  MATH  Google Scholar 

  11. Sedlaczek, K., Dronka, S., Rauh, J.: Advanced modular modelling of rubber bushings for vehicle simulations. Veh. Syst. Dyn. 49, 741–759 (2011). https://doi.org/10.1080/00423111003739806

    Article  Google Scholar 

  12. Tao, C., Zhu, H., Xu, P., Zhang, Y.: Frequency-dependent hydraulic engine mount with five-parameters fractional derivative model in vehicle model. SAE Tech. Pap. (2015). https://doi.org/10.4271/2015-01-1670

    Article  Google Scholar 

  13. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83, 1785–1801 (2016). https://doi.org/10.1007/s11071-015-2485-3

    Article  MATH  Google Scholar 

  14. Berg, M.: A model for rubber springs in the dynamic analysis of rail vehicles. Proc. IMechE. Part F J. Rail Rapid Transit. 21, 95–108 (1997). https://doi.org/10.1243/0954409971530941

    Article  Google Scholar 

  15. Berg, M.: A non-linear rubber spring model for rail vehicle dynamics analysis. Veh. Syst. Dyn. 30, 197–212 (1998). https://doi.org/10.1080/00423119808969447

    Article  Google Scholar 

  16. Silveira, M., Pontes, B.R., Balthazar, J.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333, 2114–2129 (2014). https://doi.org/10.1016/j.jsv.2013.12.001

    Article  Google Scholar 

  17. Sjöberg, M.M., Kari, L.: Non-linear behavior of a rubber isolator system using fractional derivatives. Veh. Syst. Dyn. 37, 217–236 (2002). https://doi.org/10.1076/vesd.37.3.217.3532

    Article  Google Scholar 

  18. Wang, D., Zhang, W., Chai, M., Zeng, X.: Research on the dynamic characteristic of semi-active hydraulic damping strut. Proc. IMechE. Part D J Automob. Eng. 234, 1779–1791 (2020). https://doi.org/10.1177/0954407019881514

    Article  Google Scholar 

  19. Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail vehicle dynamics context. Veh. Syst. Dyn. 49, 1021–1072 (2011). https://doi.org/10.1080/00423114.2011.586430

    Article  Google Scholar 

  20. Shangguan, W.B., Wu, J.: Modelling of dynamic performances for hydraulic engine mounts using fractional derivative and optimisation of powertrain mounting systems. Int. J. Veh. Des. 47, 215 (2008). https://doi.org/10.1504/IJVD.2008.020888

    Article  Google Scholar 

  21. Zhu, H., Yang, J., Zhang, Y., Feng, X., Ma, Z.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89, 1545–1568 (2017). https://doi.org/10.1007/s11071-017-3535-9

    Article  Google Scholar 

  22. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  23. Reybrouck, K.: A non linear parametric model of an automotive shock absorber. SAE Trans. 103, 1170–1177 (1994)

    Google Scholar 

  24. Cossalter, V., Doria, A., Pegoraro, R., Trombetta, L.: On the non-linear behaviour of motorcycle shock absorbers. Proc. IMechE. Part D J Automob. Eng. 224, 15–27 (2010). https://doi.org/10.1243/09544070JAUTO1273

    Article  Google Scholar 

  25. Ding, S., Su, C., Yu, J.: An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 36, 153–162 (2011). https://doi.org/10.1007/s10462-011-9208-z

    Article  Google Scholar 

  26. Shi, H., Wu, P.: A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 230, 1745–1759 (2016). https://doi.org/10.1177/0954409715614871

    Article  Google Scholar 

  27. ISO 8608, Mechanical vibration - Road surface profiles - Reporting of measured data. ISO, Geneva, Switzerland (2016)

  28. Yucesan, Y.A., Viana, F.A.C., Manin, L., Mahfoud, J.: Adjusting a torsional vibration damper model with physics-informed neural networks. Mech. Syst. Sig. Process. 154, 107552 (2021). https://doi.org/10.1016/j.ymssp.2020.107552

    Article  Google Scholar 

  29. Robson, J.D., Kamash, K.M.A.: Road surface description in relation to vehicle response. Veh. Syst. Dyn. 6, 153–157 (1977). https://doi.org/10.1080/00423117708968527

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant number 12272137.

Author information

Authors and Affiliations

Authors

Contributions

YZ did the simulation and analysis work under supervision of W-BS; ZY organized the research work and revised the paper; TL and JJ organized the research work; and SR reviewed the paper and gave suggestions.

Corresponding author

Correspondence to Wen-Bin Shangguan.

Ethics declarations

Conflict of interest

No conflicts of interest by submitting this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The working principle of the test benches in this paper is shown in Fig. 

Fig. 20
figure 20

Schematic diagrams of the test bench for vehicle vibration isolators

20.

1.1 Formula derivation

The fractional operator in Eq. (5) is obtained by using the definition of the Grünwald fractional derivative [22]:

$$ \frac{{{\text{d}}^{\beta } }}{{{\text{d}}t^{\beta } }}x{(}t{)} \approx (\Delta t)^{ - \beta } \sum\nolimits_{j = 0}^{N} {B_{j + 1} x} {(}t - j\Delta t{)} $$
(1)

where b is the damping coefficient. β is the fractional derivative order (0 < β < 1). Δt is the constant time step size. t is the current time. N is the truncated calculation step. Bj+1 is the integral coefficient:\( B_{j + 1} = \frac{ j - 1 - \beta }{j}B_{j}\), B0 = 1.

Similarly, the fractional operators in Eq. (7) can be expressed as:

$$ \frac{{{\text{d}}^{\alpha } }}{{{\text{d}}t^{\alpha } }}x{(}t{)} \approx (\Delta t)^{ - \alpha } \sum\nolimits_{j = 0}^{N} {A_{j + 1} x} {(}t - j\Delta t{)} $$
(2a)
$$ \frac{{{\text{d}}^{\beta } }}{{{\text{d}}t^{\beta } }}x{(}t{)} \approx (\Delta t)^{ - \beta } \sum\nolimits_{j = 0}^{N} {B_{j + 1} x} {(}t - j\Delta t{)} $$
(2b)
$$ \frac{{{\text{d}}^{\beta } }}{{{\text{d}}t^{\beta } }}f_{c} {(}t{)} \approx (\Delta t)^{ - \beta } \sum\nolimits_{j = 0}^{N} {B_{j + 1} f_{c} } {(}t - j\Delta t{)} $$
(2c)

where α and β are the time derivative orders. τ is the relaxation time. K0 and K are the storage stiffness in static and high frequency, respectively. The Aj+1 and Bj+1 are integral coefficients: \( A_{j + 1} = \frac{ j - 1 - \alpha }{j}A_{j}\),\( B_{j + 1} = \frac{ j - 1 - \beta }{j}B_{j}\), A0 = B0 = 1.

The five-parameter fractional derivative viscoelastic force can be rewritten as:

$$ f_{c} {(}t{) = }\frac{{K_{0} x(t) + K_{0} \tau^{\beta } (\Delta t)^{ - \beta } \sum\nolimits_{j = 0}^{N} {B_{j + 1} x} {(}t - j\Delta t{)} + (K_{\infty } - K_{0} )\tau^{\alpha } (\Delta t)^{ - \alpha } \sum\nolimits_{j = 0}^{N} {A_{j + 1} x} {(}t - j\Delta t{)} - \tau^{\beta } (\Delta t)^{ - \beta } \sum\nolimits_{j = 1}^{N} {B_{j + 1} f_{c} } {(}t - j\Delta t{)}}}{{1 + \tau^{\beta } (\Delta t)^{ - \beta } }} $$
(3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Shangguan, WB., Yin, Z. et al. A hybrid modeling approach for automotive vibration isolation mounts and shock absorbers. Nonlinear Dyn 111, 15911–15932 (2023). https://doi.org/10.1007/s11071-023-08691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08691-5

Keywords

Navigation