Skip to main content
Log in

Review and comparison of dry friction force models

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Friction force models play a fundamental role for simulation of mechanical systems. Their choice affects the matching of numerical results with physically observed behavior. Friction is a complex phenomenon depending on many physical parameters and working conditions, and none of the available models can claim general validity. This paper focuses the attention on well-known friction models and offers a review and comparison based on numerical efficiency. However, it should be acknowledged that each model has its own distinctive pros and cons. Suitability of the model depends on physical and operating conditions. Features such as the capability to replicate stiction, Stribeck effect, and pre-sliding displacement are taken into account when selecting a friction formulation. For mechanical systems, the computational efficiency of the algorithm is a critical issue when a fast and responsive dynamic computation is required. This paper reports and compares eight widespread engineering friction force models. These are divided into two main categories: those based on the Coulomb approach and those established on the bristle analogy. The numerical performances and differences of each model have been monitored and compared. Three test cases are discussed: the Rabinowicz test and other two test problems casted for this occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Al-Bender, F.: Fundamentals of friction modeling. In: ASPE Spring Topical Meeting on Control of Precision Systems (2010)

  2. Altpeter, F.: Friction Modeling, Identification and Compensation. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1999)

  3. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245(4), 685–699 (2001)

    Article  Google Scholar 

  4. Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(93), 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    Article  MATH  Google Scholar 

  6. Armstrong-Hélouvry, B., Canudas de Wit, C.: Friction modeling and compensation. In: The Control Handbook. CRC Press, Boca Raton (1995)

  7. Åström, K.J., Canudas De Wit, C.: Revisiting the LuGre Model stick–slip motion and rate dependence. IEEE Control Syst. 28(6), 101–114 (2008)

  8. Benson, D.J., Hallquist, J.O.: A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Method Appl. Mech. Eng. 78, 141–163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535 (2002)

    Article  Google Scholar 

  10. Bliman, P.A., Sorine, M.: Easy-to-use realistic dry friction models for automatic control. In: 3rd European Control Conference, Rome (Italy), pp. 3788–3794 (1995)

  11. Borello, L., Dalla Vedova, M.D.L.: Dry friction discontinuous computational algorithms. Int. J. Eng. Innov. Technol. 3(8), 1–8 (2014)

  12. Bowden, F.P., Leben, L.: The nature of sliding and the analysis of friction. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 169(938), 371–391 (1939)

  13. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Control 40(3), 419–425 (1995)

  14. Cha, H.Y., Choi, J., Ryu, H.S., Choi, J.H.: Stick–slip algorithm in a tangential contact force model for multi-body system dynamics. J. Mech. Sci. Technol. 25(7), 1687–1694 (2011)

    Article  Google Scholar 

  15. Chou, D.: Dahl Friction Modeling. Ph.D. thesis, Massachusetts Institute of Technology (2004)

  16. COMSOL: The Structural Mechanics Module. User’s Guide Version 4.3 (2012)

  17. Coulomb, P.C.A.: Theorie des machines simples. Bachelier (1821)

  18. Dahl, P.R.: Solid friction damping of mechanical vibrations. AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  19. Do, T.N., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: Nonlinear modeling and parameter identification of dynamic friction model in tendon sheath for flexible endoscopic systems. In: 10th International Conference on Informatics in Control, Automation and Robotics, pp. 5–10 (2013)

  20. Duan, C., Singh, R.: Dynamics of a 3dof torsional system with a dry friction controlled path. J. Sound Vib. 289, 657–688 (2006)

    Article  Google Scholar 

  21. Dupont, P., Armstrong, B., Hayward, V.: Elasto-plastic friction model: contact compliance and stiction. In: Proceedings of the 2000 American Control Conference, vol. 2, pp. 1072–1077 (2000)

  22. Dupont, P., Street, C., Hayward, V., Armstrong, B.: Single state elasto-plastic models for friction compensation. IEEE Trans. Automat. Control 47(5), 787–792 (1999)

    Article  Google Scholar 

  23. FunctionBay Inc: RecurDyn Solver Theoretical Manual (2012)

  24. Galvanetto, U.: Bifurcations and chaos system with dry friction. J. Sound Vib. 204(4), 690–695 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geffen, V.V.: A Study of Friction Models and Friction Compensation. Technische Universiteit Eindhoven, Technical Report (2009)

  26. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7, 471–497 (1995)

  27. Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  28. Hayward, V., Armstrong, B.: A new computational model of friction applied to haptic rendering. In: Experimental Robotics VI, vol. 250, pp. 403–412. Springer, London (2000)

  29. Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)

  30. Karnopp, D.: Computer simulation of stick slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  31. Kermani, M., Patel, R., Moallem, M.: Friction identification in robotic manipulators: case studies. In: Proceedings of IEEE Conference on Control Applications, pp. 1170–1175 (2005)

  32. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Fixed-step friction simulation: from classical coulomb model to modern continuous models. IEEE Int. Conf. Intel. Robot Syst. 1, 1009–1016 (2005)

    Google Scholar 

  33. Kim, T.C., Rook, T.E., Singh, R.: Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J. Sound Vib. 263(3), 665–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lacoursière, C., Linde, M., Lu, Y., Trinkle, J.: A framework for data exchange and benchmarking of frictional contact solvers in multibody dynamics. In: ECCOMAS Thematic Conference on Multibody Dynamics, pp. 2–3. Barcelona (2015)

  35. Liu, H., Song, X., Nanayakkara, T.: Friction estimation based object surface classification for intelligent manipulation. In: IEEE ICRA 2011 Workshop on Autonomous Grasping (2011)

  36. LMS International: LMS Virtual. Lab Motion. User’s Guide (2012)

  37. López, I., Busturia, J., Nijmeijer, H.: Energy dissipation of a friction damper. J. Sound Vib. 278(3), 539–561 (2004)

    Article  Google Scholar 

  38. Marchi, J.A.D.: Modeling of Dynamic Friction , Impact Backlash and Elastic Compliance Nonlinearities in Machine Tools , with Applications To Asymmetric Viscous and Kinetic Friction Identification. Ph.D. thesis, RensselÃęr Polytechnic Institute (1998)

  39. Marques, F., Flores, P., Lankarani, H.M.: On the frictional contacts in multibody system dynamics. In: ECCOMAS Thematic Conference on Multibody Dynamics (2015)

  40. Márton, L., Kutasi, N.: Practical identification method for striebeck friction. In: Proceedings of the 6th International Symposium of Hungarian Researchers, pp. 425–436 (2005)

  41. McMillian, A.J.: A non-linear friction model for self-excited vibrations. J. Sound Vib. 205(3), 323–335 (1997)

    Article  Google Scholar 

  42. Mostaghel, N.: A non-standard analysis approach to systems involving friction. J. Sound Vib. 284, 583–595 (2005)

    Article  Google Scholar 

  43. MSC.Software: Adams/View help (2012)

  44. Muvengei, O.: Computational implementation of LuGre friction law in a revolute joint with clearance. In: Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, vol. 4, pp. 99–108 (2012)

  45. Olsson, H., Åström, K.J., Canudas De Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

  46. Pennestrì, E., Toso, M., Rossi, V.: ESA multibody simulator for spacecrafts’ ascent and landing in a microgravity environment. CEAS Space J. (2015)

  47. Pennestrì, E., Valentini, P.P., Vita, L.: Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst. Dyn. 17, 321–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pfeiffer, F., Glocker, C.: Multibody dynamics with unilateral contact. Wiley-VCH Verlag GmbH & Co., KGaA, Germany (2004)

    MATH  Google Scholar 

  49. Piatkowski, T.: Dahl and lugre dynamic friction models—the analysis of selected properties. Mech. Mach. Theory 73, 91–100 (2014)

  50. Qi, Z., Xu, Y., Luo, X., Yao, S.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24, 133–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rabinowicz, E.: Stick and slip. Sci. Am. 194(5), 109–119 (1956)

    Article  Google Scholar 

  52. Rao, S.S.: Mechanical Vibrations. Addison-Wesley Longman Incorporated, USA (1986)

  53. Richard, C., Cutkosky, M., MacLean, K.: Friction identification for haptic display. Proc. ASME Dyn. Syst. Control Div. 67, 327–334 (1999)

    Google Scholar 

  54. Romano, R.A., Garcia, C.: Karnopp friction model identification for a real control valve. In: Proceedings of the 17th World Congress of The International Federation of Automatic Control, vol. 17, pp. 14906–14911 (2008)

  55. Rooney, G., Deravi, P.: Coulomb friction in mechanism sliding joints. Mech. Mach. Theory 17(3), 207–211 (1982)

    Article  Google Scholar 

  56. Simpack: SIMPACK Documentation (2013)

  57. Tasora, A.: An iterative fixed-point method for solving large complementarity problems in multibody systems. In: Proceedings of XVI GIMC, Bologna (2006)

  58. Thomsen, J.J., Fidlin, A.: Analytical approximations for stick–slip vibration amplitudes. Int. J. Nonlinear Mech. 38, 389–403 (2003)

    Article  MATH  Google Scholar 

  59. Threlfall, D.: The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM. Mech. Mach. Theory 13(4), 475–483 (1978)

    Article  Google Scholar 

  60. Wang, D., Rui, Y.: Simulation of the stick–slip friction between steering shafts using ADAMS. In: International ADAMS User Conference, pp. 1–11 (2000)

  61. Wu, S.C., Yang, S.M., Haug, E.J.: Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition–deletion. Mech. Mach. Theory 21(5), 417–425 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Pennestrì.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennestrì, E., Rossi, V., Salvini, P. et al. Review and comparison of dry friction force models. Nonlinear Dyn 83, 1785–1801 (2016). https://doi.org/10.1007/s11071-015-2485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2485-3

Keywords

Navigation