Skip to main content
Log in

Dynamics in a memristor-coupled heterogeneous neuron network under electromagnetic radiation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The electromagnetic environment around neurons is very complex, and studying the effect of electromagnetic radiation on the firing behavior of neurons is of great significance. In this paper, we establish a memristor-coupled heterogeneous neuron network composed of an HR neuron and a FHN neuron, where the effect of electromagnetic radiation is modeled by the induced current of the flux-controlled memristor. The firing behaviors of the network are studied through phase diagrams, time series, bifurcation diagrams, Lyapunov exponent spectrums, and local attraction basins. It is found that under different initial conditions, the network exhibits different bifurcation routes by varying the coupling strength, resulting in the coexistence of multiple firing patterns. More interestingly, the network, under different initials, appears completely opposite bifurcation routes when the electromagnetic radiation intensities vary. In addition, synchronous firing behavior between two heterogeneous neurons is also explored. It is observed that both neurons can achieve phase synchronization more easily when the coupling strength decreases to a negative value. Finally, the numerical analysis is verified by the Multisim circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Yang, M., Liu, Z., Li, L., Xu, Y., Liu, H., Gu, H., Ren, W.: Identifying distinct stochastic dynamics from chaos: a study on multimodal neural firing patterns. Int. J. Bifurc. Chaos. 19(2), 453–485 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Gu, H., Xiao, W.: Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int. J. Bifurc. Chaos. 24(6), 1450082 (2014)

    MathSciNet  Google Scholar 

  4. Liu, Y., Ma, J., Xu, Y., Jia, Y.: Electrical mode transition of hybrid neuronal model induced by external stimulus and electromagnetic induction. Int. J. Bifurc. Chaos. 29(11), 1950156 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature. 296(5853), 162–164 (1982)

    Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  7. Yao, Y., Yang, L., Wang, C., Liu, Q.: Subthreshold period signal detection by bounded noise-induced resonance in the Fitzhugh–Nagumo neuron. Complexity. 2018, 5632650 (2018)

    Google Scholar 

  8. Yao, Y., Ma, J.: Weak period signal detection by sine-wiener-noise-induced resonance in the Fitzhugh–Nagumo neuron. Cogn. Neurodyn. 12(3), 343–349 (2018)

    Google Scholar 

  9. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81(10), 3088–3092 (1984)

    MATH  Google Scholar 

  11. Leng, Y., Yu, D., Hu, Y., Yu, S.S., Ye, Z.: Dynamic behaviors of hyperbolic type memristor-based Hopfield neural network considering synaptic crosstalk. Chaos. 30(3), 033108 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature. 453(7191), 80–83 (2008)

    Google Scholar 

  13. Wu, K., Luo, T., Lu, H., Wang, Y.: Bifurcation study of neuron firing activity of the modified Hindmarsh–Rose model. Neural Comput. Appl. 27(3), 739–747 (2016)

    Google Scholar 

  14. Ngouonkadi, E.M., Fotsin, H.B., Fotso, P.L., Fotso, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos. Solitons. Fractals. 85(4), 151–163 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Bao, B., Hu, A., Xu, Q., Bao, H., Wu, H., Wu, M.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(4), 1695–1706 (2018)

    Google Scholar 

  16. Binczak, S., Jacquir, S., Bilbault, J.M., Kazantsev, V.B., Nekorkin, V.I.: Experimental study of electrical Fitzhugh–Nagumo neurons with modified excitability. Neural Netw. 19(5), 684–693 (2006)

    MATH  Google Scholar 

  17. Li, Z., Zhou, H.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear. Dyn. 104, 1455–1473 (2021)

    Google Scholar 

  18. Lin, H., Wang, C., Sun, Y.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)

    Google Scholar 

  19. Li, Z., Guo, Z.: Firing activities induced by memristive autapse in Fitzhugh–Nagumo neuron with time delay. Int. J. Electron. Commun. 142, 153995 (2021)

    Google Scholar 

  20. Wu, F., Guo, Y., Ma, J.: Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109(3), 2063–2084 (2022)

    Google Scholar 

  21. Chen, M., Luo, X., Suo, Y., Xu, Q., Wu, H.: Hidden extreme multistability and synchronicity of memristor-coupled non-autonomous memristive Fitzhugh–Nagumo models. Nonlinear Dyn. 111, 7773–7788 (2023)

    Google Scholar 

  22. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory. 18(5), 507–519 (1971)

    Google Scholar 

  23. Njitacke, Z.T., Tagne Mogue, R.L., Kengne, J., Kountchou, M., Fotsin, H.B.: Hysteretic dynamics, space magnetization and offset boosting in a third-order memristive system. Iran. J. Sci. Technol. Trans. Electr. Eng. 44, 413–429 (2020)

    Google Scholar 

  24. Tapche, R.W., Njitacke, Z.T., Kengne, J., Pelap, F.B.: Complex dynamics of a novel 3D autonomous system without linear terms having line of equilibria. Coexisting bifurcations and circuit design. Analog Integr. Circuits Signal Process. 103, 57–71 (2020)

    Google Scholar 

  25. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    MathSciNet  Google Scholar 

  26. Njitacke, Z.T., Sone, M.E., Fozin, T.F., Tsafack, N., Leutcho, G.D., Tchapga, C.T.: Control of multistability with selection of chaotic attractor: application to image encryption. Eur. Phys. J. Spec. Top. 230, 1839–1854 (2021)

    Google Scholar 

  27. Bao, B., Bao, H., Wang, N.: Hidden extreme multistability in memristive hyperchaotic system. Chaos. Solitons. Fractals. 94, 102–111 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Wan, Q., Li, F., Chen, S., Yang, Q.: Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation. Chaos. Solitons. Fractals. 169(4), 113259 (2023)

    Google Scholar 

  29. Ma, M., Xie, X., Yang, Y., Li, Z., Sun, Y.: Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor. Chin. Phys. B 32, 058701 (2023)

    Google Scholar 

  30. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  31. Li, J., Liu, S., Liu, W., Yu, Y., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83(1–2), 801–810 (2016)

    MathSciNet  Google Scholar 

  32. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing. 205(12), 375–381 (2016)

    Google Scholar 

  33. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  34. Yu, F., Shen, H., Zhang, Z., Huang, Y., Cai, S., Du, S.: Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation. Chaos Solitons Fractals. 152, 111350 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251 (2017)

    MathSciNet  Google Scholar 

  36. Hu, X., Liu, C., Liu, L.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91, 1541–1554 (2018)

    Google Scholar 

  37. Njitacke, Z.T., Tsafack, N., Ramakrishnan, B.: Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: application in images encryption. Chaos Solitons Fractals. 153, 111577 (2021)

    MathSciNet  Google Scholar 

  38. Wan, Q., Yan, Z., Li, F.: Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation. Chaos: Interdiscip. J. Nonlinear Sci. 32(7), 073107 (2022)

    MathSciNet  Google Scholar 

  39. Zhang, S., Li, C., Zheng, J.: Memristive autapse-coupled neuron model with external electromagnetic radiation effects. IEEE Trans. Ind. Electron. (2022)

  40. Xu, Y., Ren, G., Ma, J.: Patterns stability in cardiac tissue under spatial electromagnetic radiation. Chaos Solitons Fractals. 171, 113522 (2023)

    MathSciNet  Google Scholar 

  41. Chang, H., Li, Y., Chen, G., Yuan, F.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifurc. Chaos. 30(08), 2030019 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Stowe, T.A., Pitts, E.G., Leach, A.C.: Diurnal rhythms in cholinergic modulation of rapid dopamine signals and associative learning in the striatum. Cell Rep. 39(1), 110633 (2022)

    Google Scholar 

  43. Kapogiannis, D., Mattson, M.P.: Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 10(2), 187–198 (2011)

    Google Scholar 

  44. Zhou, P., Ma, J., Xu, Y.: Phase synchronization between neurons under nonlinear coupling via hybrid synapse. Chaos Solitons Fractals. 169, 113238 (2023)

    MathSciNet  Google Scholar 

  45. Wang, H., Lu, Q., Shi, X.: Phase synchronization and its transition in two coupled bursting neurons: theoretical and numerical analysis. Chin. Phys. B. 19(6), 060509 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grant No. 62171401 and 62071411 and the Hunan Provincial Natural Science

Foundation of China under Grant No. 2022JJ30572.

Funding

Authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Li, Z., Wang, M. et al. Dynamics in a memristor-coupled heterogeneous neuron network under electromagnetic radiation. Nonlinear Dyn 111, 16527–16543 (2023). https://doi.org/10.1007/s11071-023-08671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08671-9

Keywords

Navigation