Skip to main content
Log in

Memristor-based oscillatory behavior in the FitzHugh–Nagumo and Hindmarsh–Rose models

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The neural firing activities related to information coding maintaining the information transmission vary qualitatively considering the electromagnetic induction. The firing of a single neuron can be investigated by Hopf bifurcation analysis. In this paper, with the help of the center manifold theory and algebraic invariants method, general parameter conditions are obtained for the existence and stability of Hopf bifurcation in the memristive FitzHugh–Nagumo (FHN) and Hindmarsh–Rose (HR) models. By studying the roots of the characteristic polynomial, the parameter ranges that cause the systems to undergo oscillations have been studied. With the help of the Lyapunov functions, the general form of the first Lyapunov coefficient is obtained for the memristive FHN model. By using the center manifold theory and algebraic invariants method, the memristive HR model is reduced to a more manageable model which inherits the local dynamics of the original model. The effects of electromagnetic induction on neural oscillations are studied for general parameter conditions. The oscillatory bursting firing regimes for the models are illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solitons Fractals 31(1), 30–38 (2007)

    Article  MathSciNet  Google Scholar 

  2. Kitajima, H., Kurths, J.: Synchronized firing of FitzHugh-Nagumo neurons by noise. Chaos 15(2), 023704 (2005)

    Article  MathSciNet  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  4. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  5. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission like simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  6. Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurcat. Chaos 27(2), 1750030 (2017)

    Article  MathSciNet  Google Scholar 

  7. Wang, R., Feng, P., Fan, Y., Wu, Y.: Spontaneous electromagnetic induction modulating the neuronal dynamical response. Int. J. Bifurcat. Chaos 29(1), 1950005 (2019)

    Article  MathSciNet  Google Scholar 

  8. Korotkov, A.G., Kazakov, A.O., Levanova, T.A.: Effects of memristor-based coupling in the ensemble of FitzHugh-Nagumo elements. Eur. Phys. J. Special Topics 228(10), 2325–2337 (2019)

    Article  Google Scholar 

  9. Jia, Y.B., Lu, B., Gu, H.G.: Excitatory electromagnetic induction current enhances coherence resonance of the FitzHugh-Nagumo neuron. Int. J. Mod. Phys. B 33(21), 1950242 (2019)

    Article  Google Scholar 

  10. Lv, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  11. Wu, F.Q., Gu, H.G., Li, Y.Y.: Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities. Commun. Nonlinear Sci. Numer. Simul. 79, 104924 (2019)

    Article  MathSciNet  Google Scholar 

  12. Liu, Y.J., Nazarimehr, F., Khalaf, A.J.M., Alsaedi, A., Hayat, T.: Detecting bifurcation points in a memristive neuron model. Eur. Phys. J. Special Topics 228(10), 1943–1950 (2019)

    Article  Google Scholar 

  13. Usha, K., Subha, P.A.: Hindmarsh-Rose neuron model with memristors. BioSystems 178, 1–9 (2019)

    MATH  Google Scholar 

  14. Usha, K., Subha, P.A.: Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chin. Phys. B 28(2), 020502 (2019)

    Article  Google Scholar 

  15. Babacan, Y., Kacar, F., Gurkan, K.: A spiking and bursting neuron circuit based on memristor. Neurocomputing 203, 86–91 (2016)

    Article  Google Scholar 

  16. Yan, B., Panahi, S., He, S.B., Jafari, S.: Further dynamical analysis of modified Fitzhugh-Nagumo model under the electric field. Nonlinear Dyn. 101(1), 521–529 (2020)

    Article  Google Scholar 

  17. Lu, L.L., Bao, C., Ge, M.Y., Xu, Y., Yang, L.J., Zhan, X., Jia, Y.: Phase noise-induced coherence resonance in three dimension memristive Hindmarsh-Rose neuron model. Eur. Phys. J. Special Topics 228(10), 2101–2110 (2019)

    Article  Google Scholar 

  18. Tabi, C.B., Eteme, A.S., Kofane, T.C.: Unstable cardiac multi-spiral waves in a FitzHugh-Nagumo soliton model under magnetic flow effect. Nonlinear Dyn. 100(4), 3799–3814 (2020)

    Article  Google Scholar 

  19. Fu, Y.-X., Kang, Y.-M., Xie, Y.: Subcritical Hopf bifurcation and stochastic resonance of electrical activities in neuron under electromagnetic induction. Front. Comput. Neurosci. 12(6) (2018)

  20. Hu, X.Y., Liu, C.X.: Dynamic property analysis and circuit implementation of simplified memristive Hodgkin-Huxley neuron model. Nonlinear Dyn. 97(2), 1721–1733 (2019)

    Article  Google Scholar 

  21. Zhang, X.J., Gua, H.G., Wu, F.Q.: Memristor reduces conduction failure of action potentials along axon with Hopf bifurcation. Eur. Phys. J. Special Topics 228(10), 2053–2063 (2019)

    Article  Google Scholar 

  22. Takembo, C.N., Mvogo, A., Fouda, Ekobena, H.P., Kofane T.C: Wave pattern stability of neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 96(2), 1083–1093 (2019)

    Article  Google Scholar 

  23. Euzebio, R.D., Llibre, J., Vidal, C.: Zero-Hopf bifurcation in the FitzHugh-Nagumo system. Math. Methods Appl. Sci. 38(17), 4289–4299 (2015)

    Article  MathSciNet  Google Scholar 

  24. Xia, Y.H., Grasic, M., Huang, W., Romanovski, V.G.: Limit cycles in a model of olfactory sensory neurons. Int. J. Bifurcat. Chaos 29(3), 1950038 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zhang, L.W., Yu, J.: Invariant algebraic surfaces of the FitzHugh-Nagumo system. J. Math. Anal. Appl. 483(2), 123097 (2020)

    Article  MathSciNet  Google Scholar 

  26. Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)

    Article  Google Scholar 

  27. Ma, J., Wang, Y., Wang, C.N., Xu, Y., Ren, G.D.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99, 219–225 (2017)

    Article  Google Scholar 

  28. Wu, F.Q., Wang, C.N., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  29. Chen, M., Qi, J.W., Wu, H.G., Xu, Q., Bao, B.C.: Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci. China Technol. Sci. 63(6), 1035–1044 (2020)

    Article  Google Scholar 

  30. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  31. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2006)

    MATH  Google Scholar 

  32. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  33. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems. Birkhauser, Boston (2009)

    MATH  Google Scholar 

  34. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Switzerland (2007)

    Book  Google Scholar 

  35. Li, Y.J., Romanovski, V.G.: Hopf bifurcations in a predator-prey model with an omnivore. Qual. Theory Dyn. Syst. 18(3), 1201–1224 (2019)

    Article  MathSciNet  Google Scholar 

  36. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. Royal Soc. B 221, 87–102 (1984)

    Google Scholar 

  37. Ma, J., Zhang, G., Hayat, T., Ren, G.D.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Article  Google Scholar 

  38. Kusbeyzi Aybar, I., Aybar, O.O., Fercec, B., Romanovski, V.G., Swarup Samal, S., Weber, A.: Investigation of invariants of a chemical reaction system with algorithms of computer algebra. MATCH Commun. Math. Comput. Chem. 74(3), 465–480 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I kindly thank Prof. Dr. Ahmet Arif Ergin, Prof. Dr. Fikrettin Sahin, Prof. Dr. Bayram Yilmaz, Dr. Burcu Kasapoglu, and Dr. Sami Agus for their precious time and constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The author performed all investigations.

Corresponding author

Correspondence to Ilknur Kusbeyzi Aybar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Funding

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusbeyzi Aybar, I. Memristor-based oscillatory behavior in the FitzHugh–Nagumo and Hindmarsh–Rose models. Nonlinear Dyn 103, 2917–2929 (2021). https://doi.org/10.1007/s11071-021-06231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06231-7

Keywords

Navigation