Skip to main content
Log in

Global analysis of stochastic and parametric uncertainty in nonlinear dynamical systems: adaptative phase-space discretization strategy, with application to Helmholtz oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An adaptative phase-space discretization strategy for the global analysis of stochastic nonlinear dynamical systems with competing attractors considering parameter uncertainty and noise is proposed. The strategy is based on the classical Ulam method. The appropriate transfer operators for a given dynamical system are derived and applied to obtain and refine the basins of attraction boundaries and attractors distributions. A review of the main concepts of parameter uncertainty and stochasticity from a global dynamics perspective is given, and the necessary modifications to the Ulam method are addressed. The stochastic basin of attraction definition here used replaces the usual basin concept. It quantifies the probability of the response associated with a given set of initial conditions to converge to a particular attractor. The phase-space dimension is augmented to include the extra dimensions associated with the parameter space for the case of parameter uncertainty, being a function of the number of uncertain parameters. The expanded space is discretized, resulting in a collection of transfer operators that enable obtaining the required statistics. A Monte Carlo procedure is conducted for the stochastic case to construct the proper transfer operator. An archetypal nonlinear oscillator with noise and uncertainty is investigated in-depth through the proposed strategy, showing significative computational cost reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009). https://doi.org/10.1016/j.strusafe.2008.06.020

    Article  Google Scholar 

  2. Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds.): Computational Methods in Stochastic Dynamics, vol. 1. Springer, Dordrecht (2011)

    Google Scholar 

  3. Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds.): Computational Methods in Stochastic Dynamics, vol. 2. Springer, Dordrecht (2013)

    Google Scholar 

  4. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5, 242–272 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Gerritsma, M., van der Steen, J.-B., Vos, P., Karniadakis, G.: Time-dependent generalized polynomial chaos. J. Comput. Phys. 229, 8333–8363 (2010). https://doi.org/10.1016/j.jcp.2010.07.020

    Article  MathSciNet  MATH  Google Scholar 

  6. Mai, C.V.: Polynomial Chaos Expansions for Uncertain Dynamical Systems - Applications In Earthquake Engineering. PhD thesis, ETH Zürich, Zürich (2016)

  7. Luchtenburg, D.M., Brunton, S.L., Rowley, C.W.: Long-time uncertainty propagation using generalized polynomial chaos and flow map composition. J. Comput. Phys. 274, 783–802 (2014). https://doi.org/10.1016/j.jcp.2014.06.029

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  9. Han, X., Kloeden, P.E.: Random Ordinary Differential Equations and their Numerical Solution, Vol. 85. Springer, Singapore (2017)

  10. Mezić, I.: Koopman operator, geometry, and learning of dynamical systems. Not. Am. Math. Soc. 68, 1 (2021). https://doi.org/10.1090/noti2306

    Article  MathSciNet  MATH  Google Scholar 

  11. Ulam, S.M.: Problems in Modern Mathematics. John Wiley & Sons, New York (1964)

    MATH  Google Scholar 

  12. Hsu, C.S.: A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. J. Appl. Mech. 48, 634–642 (1981). https://doi.org/10.1115/1.3157686

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, C.S.: A theory of cell-to-cell mapping dynamical systems. J. Appl. Mech. 47, 931–939 (1980). https://doi.org/10.1115/1.3153816

    Article  MathSciNet  MATH  Google Scholar 

  14. Guder, R., Kreuzer, E.J.: Using generalized cell mapping to approximate invariant measures on compact manifolds. Int. J. Bifurc. Chaos. 07, 2487–2499 (1997). https://doi.org/10.1142/S0218127497001667

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsu, C.S., Chiu, H.M.: A cell mapping method for nonlinear deterministic and stochastic systems—part I: the method of analysis. J. Appl. Mech. 53, 695 (1986). https://doi.org/10.1115/1.3171833

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiu, H.M., Hsu, C.S.: A cell mapping method for nonlinear deterministic and stochastic systems—part II: examples of application. J. Appl. Mech. 53, 702 (1986). https://doi.org/10.1115/1.3171834

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, J.-Q., Hsu, C.S.: The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation. J. Appl. Mech. 57, 1018–1025 (1990). https://doi.org/10.1115/1.2897620

    Article  MathSciNet  Google Scholar 

  18. Han, Q., Xu, W., Sun, J.-Q.: Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method. Phys. A Stat. Mech. its Appl. 458, 115–125 (2016). https://doi.org/10.1016/j.physa.2016.04.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Yue, X., Wang, Y., Han, Q., Xu, Y., Xu, W.: Transient responses of nonlinear dynamical systems under colored noise. EPL. Europhys. Lett. 127, 24004 (2019). https://doi.org/10.1209/0295-5075/127/24004

    Article  Google Scholar 

  20. Yue, X., Wang, Y., Han, Q., Xu, Y., Xu, W.: Probabilistic response and stochastic bifurcation in a turbulent swirling flow. J. Comput. Nonlinear Dyn. (2019). https://doi.org/10.1115/1.4044500

    Article  Google Scholar 

  21. Han, Q., Xu, W., Hao, H., Yue, X.: Global analysis of stochastic systems by the digraph cell mapping method based on short-time gaussian approximation. Int. J. Bifurc. Chaos. 30, 2050071 (2020). https://doi.org/10.1142/S0218127420500716

    Article  MathSciNet  MATH  Google Scholar 

  22. Yue, X., Xu, Y., Xu, W., Sun, J.-Q.: Probabilistic response of dynamical systems based on the global attractor with the compatible cell mapping method. Phys. A Stat. Mech. its Appl. 516, 509–519 (2019). https://doi.org/10.1016/j.physa.2018.10.034

    Article  MathSciNet  MATH  Google Scholar 

  23. Yue, X., Xu, Y., Xu, W., Sun, J.-Q.: Global invariant manifolds of dynamical systems with the compatible cell mapping method. Int. J. Bifurc. Chaos. 29, 1950105 (2019). https://doi.org/10.1142/S0218127419501050

    Article  MathSciNet  MATH  Google Scholar 

  24. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75, 293–317 (1997). https://doi.org/10.1007/s002110050240

    Article  MathSciNet  MATH  Google Scholar 

  25. Dellnitz, M., Hohmann, A., Junge, O., Rumpf, M.: Exploring invariant sets and invariant measures. Chaos An Interdiscip. J. Nonlinear Sci. 7, 221–228 (1997). https://doi.org/10.1063/1.166223

    Article  MathSciNet  MATH  Google Scholar 

  26. Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491–515 (1999). https://doi.org/10.1137/S0036142996313002

    Article  MathSciNet  MATH  Google Scholar 

  27. Yue, X., Xu, W., Zhang, Y.: Global bifurcation analysis of Rayleigh-Duffing oscillator through the composite cell coordinate system method. Nonlinear Dyn. 69, 437–457 (2012). https://doi.org/10.1007/s11071-011-0276-z

    Article  MathSciNet  Google Scholar 

  28. Yue, X., Lv, G., Zhang, Y.: Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity. Chaos Solitons Fractals 150, 111108 (2021). https://doi.org/10.1016/j.chaos.2021.111108

    Article  MathSciNet  MATH  Google Scholar 

  29. Yue, X., Xiang, Y., Zhang, Y., Xu, Y.: Global analysis of stochastic bifurcation in shape memory alloy supporter with the extended composite cell coordinate system method. Chaos An Interdiscip. J. Nonlinear Sci. 31, 013133 (2021). https://doi.org/10.1063/5.0024992

    Article  MathSciNet  Google Scholar 

  30. Lindner, M., Hellmann, F.: Stochastic basins of attraction and generalized committor functions. Phys. Rev. E. 100, 022124 (2019). https://doi.org/10.1103/PhysRevE.100.022124

    Article  Google Scholar 

  31. Andonovski, N., Lenci, S.: Six-dimensional basins of attraction computation on small clusters with semi-parallelized SCM method. Int. J. Dyn. Control. (2019). https://doi.org/10.1007/s40435-019-00557-2

    Article  Google Scholar 

  32. Belardinelli, P., Lenci, S.: A first parallel programming approach in basins of attraction computation. Int. J. Non. Linear. Mech. 80, 76–81 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.10.016

    Article  Google Scholar 

  33. Belardinelli, P., Lenci, S.: An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dyn. 86, 2279–2290 (2016). https://doi.org/10.1007/s11071-016-2849-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, J.-Q., Xiong, F.-R., Schütze, O., Hernández, C.: Cell Mapping Methods. Springer, Singapore (2019)

    Book  MATH  Google Scholar 

  35. Klus, S., Koltai, P., Schütte, C.: On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Comput. Dyn. (2015). https://doi.org/10.3934/jcd.2016003

    Article  MATH  Google Scholar 

  36. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO — set oriented numerical methods for dynamical systems. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 145–174. Springer, Berlin (2001)

    Chapter  MATH  Google Scholar 

  37. Padberg, K., Thiere, B., Preis, R., Dellnitz, M.: Local expansion concepts for detecting transport barriers in dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14, 4176–4190 (2009). https://doi.org/10.1016/j.cnsns.2009.03.018

    Article  MathSciNet  MATH  Google Scholar 

  38. Dellnitz, M., Klus, S., Ziessler, A.: A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM J. Appl. Dyn. Syst. 16, 120–138 (2017). https://doi.org/10.1137/16M1072735

    Article  MathSciNet  MATH  Google Scholar 

  39. Gerlach, R., Koltai, P., Dellnitz, M.: Revealing the intrinsic geometry of finite dimensional invariant sets of infinite dimensional dynamical systems. (2019). https://doi.org/10.48550/arXiv.1902.08824

  40. Ziessler, A., Dellnitz, M., Gerlach, R.: The numerical computation of unstable manifolds for infinite dimensional dynamical systems by embedding techniques. SIAM J. Appl. Dyn. Syst. 18, 1265–1292 (2019). https://doi.org/10.1137/18M1204395

    Article  MathSciNet  MATH  Google Scholar 

  41. Gerlach, R., Ziessler, A., Eckhardt, B., Dellnitz, M.: A set-oriented path following method for the approximation of parameter dependent attractors. SIAM J. Appl. Dyn. Syst. 19, 705–723 (2020). https://doi.org/10.1137/19M1247139

    Article  MathSciNet  MATH  Google Scholar 

  42. Koltai, P.: A stochastic approach for computing the domain of attraction without trajectory simulation. Conf. Publ. 2011, 854–863 (2011). https://doi.org/10.3934/proc.2011.2011.854

    Article  MathSciNet  MATH  Google Scholar 

  43. Koltai, P., Volf, A.: Optimizing the stable behavior of parameter-dependent dynamical systems—maximal domains of attraction, minimal absorption times. J. Comput. Dyn. 1, 339–356 (2014). https://doi.org/10.3934/jcd.2014.1.339

    Article  MathSciNet  MATH  Google Scholar 

  44. Froyland, G., Junge, O., Koltai, P.: Estimating long-term behavior of flows without trajectory integration: the infinitesimal generator approach. SIAM J. Numer. Anal. 51, 223–247 (2013). https://doi.org/10.1137/110819986

    Article  MathSciNet  MATH  Google Scholar 

  45. Froyland, G., Koltai, P.: Estimating long-term behavior of periodically driven flows without trajectory integration. Nonlinearity 30, 1948–1986 (2017). https://doi.org/10.1088/1361-6544/aa6693

    Article  MathSciNet  MATH  Google Scholar 

  46. Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28, 985–1010 (2018). https://doi.org/10.1007/s00332-017-9437-7

    Article  MathSciNet  MATH  Google Scholar 

  47. Froyland, G., Stuart, R.M., van Sebille, E.: How well-connected is the surface of the global ocean? Chaos (2014). https://doi.org/10.1063/1.4892530

    Article  MathSciNet  MATH  Google Scholar 

  48. Ding, J., Li, T.Y.: Markov finite approximation of Frobenius–Perron operator. Nonlinear Anal. Theory Methods Appl. 17, 759–772 (1991). https://doi.org/10.1016/0362-546X(91)90211-I

    Article  MathSciNet  MATH  Google Scholar 

  49. Ding, J., Du, Q., Li, T.Y.: High order approximation of the Frobenius-Perron operator. Appl. Math. Comput. 53, 151–171 (1993). https://doi.org/10.1016/0096-3003(93)90099-Z

    Article  MathSciNet  MATH  Google Scholar 

  50. Junge, O., Marsden, J.E., Mezic, I.: Uncertainty in the dynamics of conservative maps. Proc. IEEE Conf. Decis. Control. 2, 2225–2230 (2004). https://doi.org/10.1109/cdc.2004.1430379

    Article  Google Scholar 

  51. Jin, C., Ding, J.: A linear spline Markov approximation method for random maps with position dependent probabilities. Int. J. Bifurc. Chaos. 30, 2050046 (2020). https://doi.org/10.1142/S0218127420500467

    Article  MathSciNet  MATH  Google Scholar 

  52. Bangura, R.M., Jin, C., Ding, J.: The norm convergence of a least squares approximation method for random maps. Int. J. Bifurc. Chaos. 31, 2150068 (2021). https://doi.org/10.1142/S0218127421500681

    Article  MathSciNet  MATH  Google Scholar 

  53. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise, vol. 97. Springer, New York (1994)

    Book  MATH  Google Scholar 

  54. Lenci, S., Rega, G.: Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. J. Vib. Control. 9, 281–315 (2003). https://doi.org/10.1177/107754603030753

    Article  MathSciNet  MATH  Google Scholar 

  55. Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33, 71–86 (2003). https://doi.org/10.1023/A:1025509014101

    Article  MathSciNet  MATH  Google Scholar 

  56. Gonçalves, P.B., da Silva, F.M.A., Rega, G., Lenci, S.: Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn. 63, 61–82 (2011). https://doi.org/10.1007/s11071-010-9785-4

    Article  MathSciNet  MATH  Google Scholar 

  57. Benedetti, K.C.B., Gonçalves, P.B., Lenci, S., Rega, G.: An operator methodology for the global dynamic analysis of stochastic nonlinear systems. Theor. Appl. Mech. Lett. (2022). https://doi.org/10.1016/j.taml.2022.100419

    Article  Google Scholar 

  58. Thompson, J.M.T.: Designing against capsize in beam seas: recent advances and new insights. Appl. Mech. Rev. 50, 307 (1997). https://doi.org/10.1115/1.3101710

    Article  Google Scholar 

  59. Soliman, M.S., Gonçalves, P.B.: Chaotic behaviour resulting in transient and steady-state instabilities of pressure loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003). https://doi.org/10.1006/jsvi.2002.5163

    Article  Google Scholar 

  60. da Silva, F.M.A., Gonçalves, P.B.: The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dyn. 81, 707–724 (2015). https://doi.org/10.1007/s11071-015-2021-5

    Article  Google Scholar 

  61. Mezić, I., Runolfsson, T.: Uncertainty propagation in dynamical systems. Automatica 44, 3003–3013 (2008). https://doi.org/10.1016/j.automatica.2008.04.020

    Article  MathSciNet  MATH  Google Scholar 

  62. Milnor, J.: On the concept of attractor. In: The theory of chaotic attractors. Springer, New York, pp. 243–264 (1985)

  63. Ashwin, P.: Minimal attractors and bifurcations of random dynamical systems. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 455, 2615–2634 (1999). https://doi.org/10.1098/rspa.1999.0419

    Article  MathSciNet  MATH  Google Scholar 

  64. Ochs, G.: Random attractors: robustness, numerics and chaotic dynamics. In: Ergodic theory, analysis, and efficient simulation of dynamical systems, pp. 1–30. Springer, Berlin (2001)

    MATH  Google Scholar 

  65. Le Maître, O.P., Knio, O.M.: Spectral Methods for uncertainty Quantification. Springer, Dordrecht (2010)

    Book  MATH  Google Scholar 

  66. Benedetti, K.C.B., Gonçalves, P.B.: Nonlinear response of an imperfect microcantilever static and dynamically actuated considering uncertainties and noise. Nonlinear Dyn. 107, 1725–1754 (2022). https://doi.org/10.1007/s11071-021-06600-2

    Article  Google Scholar 

  67. Takeishi, N., Kawahara, Y., Yairi, T.: Learning Koopman invariant subspaces for dynamic mode decomposition. Adv. Neural Inf. Process. Syst. 2017-Decem, pp. 1131–1141 (2017)

  68. Mauroy, A., Mezić, I.: Global stability analysis using the Eigenfunctions of the Koopman operator. IEEE Trans. Automat. Contr. 61, 3356–3369 (2016). https://doi.org/10.1109/TAC.2016.2518918

    Article  MathSciNet  MATH  Google Scholar 

  69. Brunton, S.L., Budišić, M., Kaiser, E., Kutz, J.N.: Modern Koopman theory for dynamical systems. SIAM Rev. 64, 229–340 (2022). https://doi.org/10.1137/21M1401243

    Article  MathSciNet  MATH  Google Scholar 

  70. Ding, J., Yien Li, T., Zhou, A.: Finite approximations of Markov operators. J. Comput. Appl. Math. 147, 137–152 (2002). https://doi.org/10.1016/S0377-0427(02)00429-6

    Article  MathSciNet  MATH  Google Scholar 

  71. Benedetti, K.C.B.: Global Analysis of Stochastic Nonlinear Dynamical Systems: an Adaptative Phase-Space Discretization Strategy. PhD thesis, Pontifical Catholic University of Rio de Janeiro, (2022)

  72. Grüne, L.: Subdivision techniques for the computation of domains of attractions and reachable sets. IFAC Proc. 34, 729–734 (2001). https://doi.org/10.1016/s1474-6670(17)35265-5

    Article  Google Scholar 

  73. Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization, vol. 1783. Springer, Berlin (2002)

    MATH  Google Scholar 

  74. Dellnitz, M., Junge, O.: An adaptive subdivision technique for the approximation of attractors and invariant measures. Comput. Vis. Sci. 1, 63–68 (1998). https://doi.org/10.1007/s007910050006

    Article  MATH  Google Scholar 

  75. Junge, O.: An adaptive subdivision technique for the approximation of attractors and invariant measures: proof of convergence. Dyn. Syst. 16, 213–222 (2001). https://doi.org/10.1080/14689360110060708

    Article  MathSciNet  MATH  Google Scholar 

  76. Guder, R., Kreuzer, E.J.: Control of an adaptive refinement technique of generalized cell mapping by system dynamics. Nonlinear Dyn. 20, 21–32 (1999). https://doi.org/10.1023/A:1008352418599

    Article  MathSciNet  MATH  Google Scholar 

  77. Koltai, P.; Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems—Theory, Algorithms And Examples. PhD thesis, Technischen Universität München, Munich (2010)

  78. Guder, R., Kreuzer, E.: Basin boundaries and robustness of nonlinear dynamic systems. Arch. Appl. Mech. 69, 569–583 (1999). https://doi.org/10.1007/s004190050244

    Article  MATH  Google Scholar 

  79. Lukaszyk, S.: A new concept of probability metric and its applications in approximation of scattered data sets. Comput. Mech. 33, 299–304 (2004). https://doi.org/10.1007/s00466-003-0532-2

    Article  MathSciNet  MATH  Google Scholar 

  80. Goswami, D., Thackray, E., Paley, D.A.: Constrained ulam dynamic mode decomposition: approximation of the perron-frobenius operator for deterministic and stochastic systems. IEEE Control Syst. Lett. 2, 809–814 (2018). https://doi.org/10.1109/LCSYS.2018.2849552

    Article  MathSciNet  Google Scholar 

  81. Burkardt J (2014) The Truncated Normal Distribution. Department of scientific computing, Florida State University (2014)

  82. Gonçalves, P.B., Santee, D.M.: Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric postbuckling behavior. Math. Probl. Eng. 2008, 1–24 (2008). https://doi.org/10.1155/2008/490137

    Article  MATH  Google Scholar 

  83. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  84. Benedetti, K.C.B., Gonçalves, P.B., da Silva, F.M.A.: Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach. Meccanica 55, 2623–2657 (2020). https://doi.org/10.1007/s11012-020-01202-5

    Article  MathSciNet  Google Scholar 

  85. Lenci, S., Orlando, D., Rega, G., Gonçalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos (2012). https://doi.org/10.1063/1.4746094

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Americo Barbosa da Cunha Junior for the discussions regarding the mathematical background, and to the anonymous reviewers. The authors also acknowledge the financial support of the Brazilian research agencies, CNPq [Grant Numbers 301355/2018-5 and 200198/2022-0], FAPERJ-CNE [Grant Number E-26/202.711/2018], FAPERJ Nota 10 [Grant Number E-26/200.357/2020] and CAPES [finance code 001 and 88881.310620/2018-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaio C. B. Benedetti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, K.C.B., Gonçalves, P.B., Lenci, S. et al. Global analysis of stochastic and parametric uncertainty in nonlinear dynamical systems: adaptative phase-space discretization strategy, with application to Helmholtz oscillator. Nonlinear Dyn 111, 15675–15703 (2023). https://doi.org/10.1007/s11071-023-08667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08667-5

Keywords

Navigation