Skip to main content
Log in

Nonlinear normal mode-based study of synchronization in delay coupled limit cycle oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear normal modes (NNMs) are defined as curved invariant structures (manifolds) in the phase-space of a nonlinear dynamical system, which confine the trajectories initiated on them to themselves and hence provide a reduced order subspace for the system to evolve. In this work, NNMs, obtained through graph style parameterization method, are used to study synchronization dynamics of two non-isochronous, frequency detuned limit cycle oscillators (LCOs) under displacement-based/reactive and velocity-based/dissipative coupling, also considering the effect of delayed interactions. The NNMs contain closed curves corresponding to either the in-phase or out-of-phase synchronized oscillations. The motion initiated on these NNMs is found to evolve strictly on them, unless it encounters a fixed point or closed orbit with an out-of-plane unstable direction, in which case it may even transition to the other manifold. In all other cases, the motion settles onto a stable fixed point or orbit on either manifold if existent, or on to a quasi-periodic orbit lying between the two manifolds in the absence of one. The NNMs are used to uncouple the governing equations of the system, directly giving the in-phase and out-of-phase synchronization frequencies and stability. Parametric study using averaged equations as well as the direct numerical integration-based evolution of the original system on the NNMs is used to identify various bifurcations. The properties of NNMs are tested for qualitatively different motions hence determined. NNMs for the delay coupled oscillators are obtained, by first expanding the delay terms in a Taylor series. It is found that even a small delay (\(<1\%\) of LCOs time period) brings a significant change in the behavior of the system. The quantitative predictions made by NNM in this case are found to be good for finite delay times (\(\approx 10\%\) of LCOs time period), while qualitative agreement was achieved for even larger delays. The results obtained here agree with prior work in the literature, at the same time extending them to hitherto unexplored parameter range and provide a new perspective on the same from the point of view of NNMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Files for obtaining datasets generated during the current study are available in the repository, https://github.com/govindm2008/NNM_Govind.

References

  1. Adler, R.: A study of locking phenomena in oscillators. Proc. IRE 34(6), 351–357 (1946)

    Google Scholar 

  2. Aronson, D.G., Ermentrout, G.B., Kopell, N.: Amplitude response of coupled oscillators. Physica D 41(3), 403–449 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Atay, F.M.: Synchronization and Amplitude Death in Coupled Limit Cycle Oscillators with Time Delays, pp. 383–389. Springer Berlin Heidelberg, Berlin (2009)

    Google Scholar 

  4. Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R.B., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in cw laser-driven nems. J. Microelectromech. Syst. 13(6), 1018–1026 (2004)

    Google Scholar 

  5. Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Balaram, B., Velayudhan, J.: Nonlinear normal modes of coupled van der pol oscillators exhibiting synchronization. 9th ENOC, Budapest, Hungary (2017)

  7. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  8. Caughey, T., Vakakis, A., Sivo, J.: Analytical study of similar normal modes and their bifurcations in a class of strongly non-linear systems. Int. J. Nonlinear Mech. 25(5), 521–533 (1990)

    Google Scholar 

  9. Cirillo, G., Mauroy, A., Renson, L., Kerschen, G., Sepulchre, R.: A spectral characterization of nonlinear normal modes. J. Sound Vib. 377, 284–301 (2016)

    Google Scholar 

  10. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Google Scholar 

  11. Driver, R.D.: Ordinary and delay differential equations/R. D. Driver. Applied mathematical sciences (Springer-Verlag New York Inc.); vol. 20. Springer, New York (1977)

  12. Earl, M.G., Strogatz, S.H.: Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E 67, 036204 (2003)

    Google Scholar 

  13. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. Wiley, New York (2011)

    Google Scholar 

  14. Fotsin, H., Woafo, P.: Adaptive synchronization of a modified and uncertain chaotic van der pol-duffing oscillator based on parameter identification. Chaos Solitons Fractals 24(5), 1363–1371 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Gendelman, O.: Nonlinear normal modes in homogeneous system with time delays. Nonlinear Dyn. 52(4), 367–376 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Govind, M., Pandey, M.: Synchronization of surface acoustic wave (saw)-based delay-coupled self-oscillating mems. Int. J. Adv. Eng. Sci. Appl. Math. 12, 218–232 (2021)

    MathSciNet  Google Scholar 

  17. Green, K., Krauskopf, B., Engelborghs, K.: One-dimensional unstable eigenfunction and manifold computations in delay differential equations. J. Comput. Phys. 197(1), 86–98 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Groothedde, C.M., James, J.M.: Parameterization method for unstable manifolds of delay differential equations. J. Comput. Dyn. 4(1 &2), 21 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Applied Mathematical Sciences. Springer New York (2013). https://books.google.com/books?id=KZTaBwAAQBAJ

  20. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Hennig, D.: Existence of nonlinear normal modes for coupled nonlinear oscillators. Nonlinear Dyn. (2014). https://doi.org/10.1007/s11071-015-1918-3

    Article  MATH  Google Scholar 

  22. Insperger, T.: On the approximation of delayed systems by Taylor series expansion. J. Comput. Nonlinear Dyn. 10(2), 024503 (2015)

    Google Scholar 

  23. Jacques, K., Fabien, K., Kamdoum Tamba, V.: Experiment on bifurcation and chaos in coupled anisochronous self-excited systems: case of two coupled van der pol-duffing oscillators. J. Nonlinear Dyn. 2014, 815783 (2014)

    MATH  Google Scholar 

  24. Karpenko, A., Vyatchanin, S.P.: Dissipative coupling, dispersive coupling, and their combination in cavityless optomechanical systems. Phys. Rev. A 102, 023513 (2020)

    Google Scholar 

  25. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part i: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Google Scholar 

  26. Kevrekidis, I.G., Schmidt, L.D., Aris, R.: Some common features of periodically forced reacting systems. Chem. Eng. Sci. 41, 1263–1276 (1986)

    Google Scholar 

  27. Kozyreff, G., Vladimirov, A.G., Mandel, P.: Global coupling with time delay in an array of semiconductor lasers. Phys. Rev. Lett. 85, 3809–3812 (2000)

    Google Scholar 

  28. Krauskopf, B., Green, K.: Computing unstable manifolds of periodic orbits in delay differential equations. J. Comput. Phys. 186(1), 230–249 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Kumar, P., Prasad, A., Ghosh, R.: Stable phase-locking of an external-cavity diode laser subjected to external optical injection. J. Phys. B: At. Mol. Opt. Phys. 41(13), 135402 (2008)

    Google Scholar 

  30. Kuznetsov, A.P., Roman, J.P.: Properties of synchronization in the systems of non-identical coupled van der pol and van der pol-duffing oscillators. broadband synchronization. Physica D 238(16), 1499–1506 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Masoller, C., Torrent, M., Garcia-Ojalvo, J.: Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367, 3255–66 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Matheny, M.H., Grau, M., Villanueva, L.G., Karabalin, R.B., Cross, M.C., Roukes, M.L.: Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014)

    Google Scholar 

  33. Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, Long Grove (2010)

    Google Scholar 

  34. MHJ, D.J., Wolde, M., Cupertino, A., Gröblacher, S., Steeneken, P.: Mechanical dissipation by substrate-mode coupling in sin resonators. Appl. Phys. Lett. 121, 032201 (2022)

    Google Scholar 

  35. Moro, S., Nishio, Y., Mori, S.: Synchronization phenomena in RC oscillators coupled by one resistor. In: Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS ’94, vol. 6, pp. 213–216. London, UK (1994)

  36. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

  37. Neild, S.A., Champneys, A.R., Wagg, D.J., Hill, T.L., Cammarano, A.: The use of normal forms for analysing nonlinear mechanical vibrations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140404 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Nusinovich, G.S., Sinitsyn, O.V., Antonsen, T.M.: Mode switching in a gyrotron with azimuthally corrugated resonator. Phys. Rev. Lett. 98, 205101 (2007)

    Google Scholar 

  39. Otto, C., Lüdge, K., Vladimirov, A., Wolfrum, M., Schöll, E.: Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback. New J. Phys. 14, 113033 (2012)

    Google Scholar 

  40. Pandey, M.: Analysis of entrainment and clamping loss in an optically actuated mems. Ph.D. thesis, Cornell University (2008)

  41. Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1291–1301 (2007)

    MATH  Google Scholar 

  42. Ponsioen, S., Jain, S., Haller, G.: Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems. J. Sound Vib. 488, 115640 (2020)

    Google Scholar 

  43. Rand, R., Holmes, P.: Bifurcation of periodic motions in two weakly coupled van der pol oscillators. Int. J. Nonlinear Mech. 15(4–5), 387–399 (1980)

    MathSciNet  MATH  Google Scholar 

  44. Rand, R.H.: A higher order approximation for non-linear normal modes in two degree of freedom systems. Int. J. Nonlinear Mech. 6(4), 545–547 (1971)

    MATH  Google Scholar 

  45. Rand, R.H.: Nonlinear normal modes in two-degree-of-freedom systems. J. Appl. Mech. 38(2), 561 (1971)

    Google Scholar 

  46. Rand, R.H.: A direct method for non-linear normal modes. Int. J. Nonlinear Mech. 9(5), 363–368 (1974)

    MATH  Google Scholar 

  47. Rand, R.H., Armbruster, D.: Perturbation Methods, Bifurcation Theory and Computer Algebra, vol. 65. Springer, Berlin (2012)

    MATH  Google Scholar 

  48. Rand, R.H., Sen, A.K.: A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Commun. Pure Appl. Anal. 2(4), 567 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Reddy, D.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80(23), 5109 (1998)

    Google Scholar 

  50. Romero, J.L., Haro, A., Luque, A., Canadell, M., Mondelo, J.: The Parameterization Method for Invariant Manifolds From Rigorous Results to Effective Computations, vol. 195 (2016). https://doi.org/10.1007/978-3-319-29662-3

  51. Rosenberg, R.: On nonlinear vibrations of systems with many degrees of freedom. In: Advances in Applied Mechanics, vol. 9, pp. 155–242. Elsevier (1966)

  52. Rosenberg, R. M.: Normal modes of nonlinear dual-mode systems. ASME. J. Appl. Mech. 27(2), 263–268 (1960). https://doi.org/10.1115/1.3643948

  53. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. ASME. J. Appl. Mech. 29(1), 7–14 (1962). https://doi.org/10.1115/1.3636501

  54. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904 (2004)

    MathSciNet  Google Scholar 

  55. Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Google Scholar 

  56. Sah, S.M., Rand, R.H.: Delay terms in the slow flow. arXiv preprint arXiv:1601.01853 (2016)

  57. Sahai, T., Vladimirsky, A.: Numerical methods for approximating invariant manifolds of delayed systems. SIAM J. Appl. Dyn. Syst. 8(3), 1116–1135 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Sahai, T., Zehnder, A.T.: Modeling of coupled dome-shaped microoscillators. J. Microelectromech. Syst. 17(3), 777–786 (2008)

    Google Scholar 

  59. Schuster, H.G., Wagner, P.: Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys. 81(5), 939–945 (1989)

    MathSciNet  Google Scholar 

  60. Sethia, G.C., Sen, A., Atay, F.M.: Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008)

    Google Scholar 

  61. Shaw, S., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991)

    Google Scholar 

  62. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    MATH  Google Scholar 

  63. Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169(3), 319–347 (1994)

    MATH  Google Scholar 

  64. Singh, L., Bahuguna, D.: Smooth stable manifold for delay differential equations with arbitrary growth rate. Axioms 10(2), 105 (2021)

    Google Scholar 

  65. Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, vol. 57. Springer, New York (2011)

    MATH  Google Scholar 

  66. Storti, D., Rand, R.: Dynamics of two strongly coupled van der pol oscillators. Int. J. Nonlinear Mech. 17(3), 143–152 (1982)

    MathSciNet  MATH  Google Scholar 

  67. Szalai, R., Ehrhardt, D., Haller, G.: Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2202), 20160759 (2017)

    MathSciNet  MATH  Google Scholar 

  68. Thomas, N., Mondal, S., Pawar, S., Sujith, R.: Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators. Chaos 28, 033119 (2018)

    MathSciNet  MATH  Google Scholar 

  69. Touzé, C.: Normal form Theory and Nonlinear Normal Modes: Theoretical Settings and Applications, pp. 75–160. Springer, Vienna (2014)

    Google Scholar 

  70. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)

    Google Scholar 

  71. Usacheva, S., Ryskin, N.: Phase locking of two limit cycle oscillators with delay coupling. Chaos 24(2), 023123 (2014)

    MathSciNet  MATH  Google Scholar 

  72. Vakakis, A.F.: Analysis and identification of linear and nonlinear normal modes in vibrating systems. Ph.D. thesis, California Institute of Technology (1991)

  73. Wirkus, S., Rand, R.: The dynamics of two coupled van der pol oscillators with delay coupling. Nonlinear Dyn. 30(3), 205–221 (2002)

    MathSciNet  MATH  Google Scholar 

  74. Xavier Cabre Ernest Fontich, RDl.L.: The parameterization method for invariant manifolds i: Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52, 283–328 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Xavier Cabre Ernest Fontich, R.D.L.L.: The parameterization method for invariant manifolds ii: regularity with respect to parameters. Indiana Univ. Math. J. 52, 329–360 (2003)

  76. Xavier Cabre Ernest Fontich, R.D.L.L.: The parameterization method for invariant manifolds iii: overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    MathSciNet  MATH  Google Scholar 

  77. Yamapi, R., Woafo, P.: Dynamics and synchronization of coupled self-sustained electromechanical devices. J. Sound Vib. 285(4), 1151–1170 (2005)

    Google Scholar 

  78. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Google Scholar 

  79. Zalalutdinov, M., Aubin, K.L., Michael, C., Reichenbach, R.B., Alan, T., Zehnder, A.T., Houston, B.H., Parpia, J.M., Craighead, H.G.: Shell-type micromechanical oscillator. In: Microtechnologies for the New Millennium 2003, pp. 229–236. International Society for Optics and Photonics (2003)

  80. Zalalutdinov, M.K., Baldwin, J.W., Marcus, M.H., Reichenbach, R.B., Parpia, J., Houston, B.H.: Two-dimensional array of coupled nanomechanical resonators. Appl. Phys. Lett. 88, 143504 (2006)

    Google Scholar 

  81. Zanette, D.H.: Propagating structures in globally coupled systems with time delays. Phys. Rev. E 62, 3167–3172 (2000)

    Google Scholar 

  82. Zehnder, A.T., Rand, R.H., Krylov, S.: Locking of electrostatically coupled thermo-optically driven mems limit cycle oscillators. Int. J. Nonlinear Mech. 102, 92–100 (2018)

    Google Scholar 

  83. Zhang, M., Shah, S., Cardenas, J., Lipson, M.: Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 115, 163902 (2015)

    Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Anil Bajaj from the School of Mechanical Engineering at Purdue University for in-depth discussions and suggestions related to the work presented in this manuscript.

Funding

We, authors Govind M and Manoj Pandey hereby declare that no funds grants, or other financial support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation and analysis were performed by Govind M. The first draft of the manuscript was written by Govind M., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Pandey.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: KBM averaging

A Appendix: KBM averaging

The expected solution for the governing equations (4) and (5) is of the form [5].

$$\begin{aligned} x_{1,2}(t)&=A_{1,2}(t)( \cos {\omega {t}+\phi _{1,2}(t)}), \end{aligned}$$
(68)
$$\begin{aligned} \dot{x}_{1,2}(t)&= - \omega A_{1,2}(t) (\sin {\omega {t}+\phi _{1,2}(t)}), \end{aligned}$$
(69)

Equations (68) and (69) can be expressed in exponential form as shown below

$$\begin{aligned} x_{1,2} (t)&=\frac{1}{2}(a_{1,2} e^{i\omega t}+a_{1,2}^* e^{-i\omega t}), \end{aligned}$$
(70)
$$\begin{aligned} \dot{x}_{1,2} (t)&=\frac{i\omega }{2}(a_{1,2} e^{i\omega t}-a_{1,2}^* e^{-i\omega t}), \end{aligned}$$
(71)

where the complex amplitudes \(a_{1,2}\) and their complex-conjugates \(a_{1,2}^*\) can be expressed as \(a_{1,2}=A_{1,2} e^{i\phi _{1,2} }\) and \( a_{1,2}^*=A_{1,2} e^{-i\phi _{1,2} }\). Differentiating (70) w.r.t time and substituting (71) will give

$$\begin{aligned} \dot{a}_{1,2} e^{i\omega t}+\dot{a}_{1,2}^* e^{-i\omega t}=0. \end{aligned}$$
(72)

Differentiating (71) w.r.t time and substituting (72) will give

$$\begin{aligned} \ddot{x}_{1,2} (t)=i\omega \dot{a}_{1,2} e^{i\omega t}-\frac{\omega ^2}{2}(a_{1,2} e^{i\omega t}+a_{1,2}^* e^{-i\omega t}). \end{aligned}$$
(73)

Substituting Eqs. (70), (71), (73) in the first equation of motion of the system Eq. (4), then multiplying throughout by \( \frac{e^(-i\omega t)}{i\omega }\) gives,

$$\begin{aligned}&\frac{1/8\,i \left( -{\textrm{e}^{2\,i\omega \,t}} {\textit{a}_{{\textit{1}}}}^{3}-3 \,{\textrm{e}^{-2\,i\omega \,t}} \textit{a}_{{\textit{1}}}\,{{\textit{a}_{{\textit{1}}}}^{*}}^{2} -{\textrm{e}^{-4\,i\omega \,t}}{{\textit{a}_{{\textit{1}}}}^{*}}^{3} -3\,{\textit{a}_{{\textit{1}}}}^{2}{\textit{a}_{{\textit{1}}}}^{*} \right) \beta }{\omega }\nonumber \\&\quad +1/8\,i \left( -i{\textrm{e}^{2\,i\omega \,t}}{\textit{a}_{{\textit{1}}}}^{3} +i{\textrm{e}^{-2\,i\omega \,t}}{} \textit{a}_{{\textit{1}}}\,{{\textit{a}_{{\textit{1}}}}^{*}}^{2} +i{\textrm{e}^{-4\,i \omega \,t}}{{\textit{a}_{{\textit{1}}}}^{*}}^{3}\right. \nonumber \\&\qquad \left. -i{\textit{a}_{{\textit{1}}}}^{2}{\textit{a}_{{\textit{1}}}}^{*} -4\,i{\textrm{e}^{-2\,i\omega \,t}}{\textit{a}_{{\textit{1}}}}^{*} +4\,i\textit{a}_{{\textit{1}}} \right) \lambda \nonumber \\&\quad +1/8\,i \left( 4\,i{\textrm{e}^{-2\,i\omega \,t}} {\textit{a}_{{\textit{1}}}}^{*}+4\,i{\textrm{e}^{-i\omega \,\tau }} \textit{a}_{{\textit{2}}}\right. \nonumber \\&\qquad \left. -4\,i{\textrm{e}^{-i\omega \, \left( 2\,t-\tau \right) }}{\textit{a}_{{\textit{2}}}}^{*} -4\,i\textit{a}_{{\textit{1}}} \right) \textit{B}_{{\textit{D}}}\nonumber \\&\quad +{\frac{1/8\,i \left( -4\,{\textrm{e}^{-2\,i \omega \,t}} {\textit{a}_{{\textit{1}}}}^{*}+4\,{\textrm{e}^{-i\omega \,\tau }} \textit{a}_{{\textit{2}}}+4\,{\textrm{e}^{-i\omega \, \left( 2\,t-\tau \right) }}{\textit{a}_{{\textit{2}}}}^{*} -4\,\textit{a}_{{\textit{1}}} \right) \textit{B}_{{\textit{R}}}}{\omega }}\nonumber \\&\quad {+}{\frac{1/8\,i \left( 4\,{\textrm{e}^{{-}2\,i\omega \,t} }{\textit{a}_{{\textit{1}}}}^{*}\,{\omega }^{2}{-}4 \,{\textrm{e}^{{-}2\,i\omega \,t}}{{\omega _1}}^{2} {\textit{a}_{{\textit{1}}}}^{*}{-}8\,i\dot{\textit{a}}_{{\textit{1}}} \,\omega {+}4\,\textit{a}_{{\textit{1}}}\,{\omega }^{2} {-}4\,{{ \omega _1}^2}{} \textit{a}_{{\textit{1}}} \right) }{\omega }}\nonumber \\&\quad {=}0. \end{aligned}$$
(74)

The a and \(\dot{a}\) are slow functions of time compared to functions of form \(e^{n i \omega t}\) and \(e^{-n i \omega t}\). This means that they (slow functions) almost do not change during one period of fast oscillations with the frequency \( \omega \). On averaging the whole equation over one period \(T=2\pi /\omega \) the fast terms get removed [5]. On averaging the terms containing \(e^{-i2\omega t},e^{-i4\omega t},e^{i2\omega t}, e^{i4\omega t}\),...etc. will turn out to be zero. After averaging substitution for a,\(\dot{a}\) and \(a^*\) gives,

$$\begin{aligned}&3\,i\pi \,{\textit{A}_{{\textit{1}}}}^{3}\beta -\pi \,{\textit{A}_{{\textit{1}}}}^{3}\lambda \,\omega -4\,i \pi \,\textit{A}_{{\textit{1}}}\,{\omega }^{2}\nonumber \\&\quad -8\,i\pi \,\textit{A}_{{\textit{1}}}\,\omega \,{\dot{\phi _1}} +4\,i\pi \,\textit{A}_{{\textit{1}}}\,{ \omega _1}^{2}\nonumber \\&\quad {-}4\,\pi \,\textit{B}_{{\textit{D}}}\,\textit{A}_{{\textit{1}}}\, \omega {+}4\,i\pi \,\textit{B}_{{\textit{R}}}\,\textit{A}_{{\textit{1}}} {+}4\,\pi \,\textit{A}_{{\textit{1}}}\,\lambda \, \omega {-}8\,\pi \,\dot{\textit{A}}_{{\textit{1}}}\,\omega \nonumber \\&\quad +4\,{\frac{\pi \,\textit{A2}\,\omega \,\textit{B}_{{\textit{D}}}\,{\textrm{e}^{i{ \phi _2}}}}{{\textrm{e}^{i\omega \,\tau }}{\textrm{e}^{i{\phi _1}}}}} -{\frac{4\,i\pi \,\textit{B}_{{\textit{R}}}\,\textit{A2} \,{\textrm{e}^{i{ \phi _2}}}}{{\textrm{e}^{i\omega \,\tau }} {\textrm{e}^{i \phi _1 }}}}=0. \end{aligned}$$
(75)

Then, separating the real part and the imaginary part gives,

$$\begin{aligned}&\dot{\textit{A}}_{{\textit{1}}}=-1/8 \, \left( -4\,\textit{A}_{{\textit{2}}}\,\cos \left( \omega \,\tau -\theta \right) +4\,\textit{A}_{{\textit{1}}}\right) \textit{B}_{{\textit{D}}}\nonumber \\&\quad -1/2\,{\frac{\textit{A}_{{\textit{2}}}\, \sin \left( \omega \,\tau -\theta \right) \textit{B}_{{\textit{R}}}}{\omega }}\nonumber \\&\quad -1/8\, \left( {\textit{A}_{{\textit{1}}}}^{3} -4\,\textit{A}_{{\textit{1}}} \right) \lambda , \end{aligned}$$
(76)
$$\begin{aligned} {\dot{\phi }_1}&{=}3/8\,{\frac{{\textit{A}_{{\textit{1}}}}^{2} \beta }{\omega }}{+}1/8\,{\frac{\left( {-}4\,\textit{A}_{{\textit{2}}} \,\cos \left( \omega \,\tau {-}\theta \right) {+}4\,\textit{A}_{{\textit{1}}} \right) \textit{B}_{{\textit{R}}}}{\textit{A}_{{\textit{1}}} \,\omega }}\nonumber \\&\quad {-}1/2\,{\frac{\textit{A}_{{\textit{2}}} \,\sin \left( \omega \,\tau -\theta \right) \textit{B}_{{\textit{D}}}}{\textit{A1}}}\nonumber \\&\quad + 1/8\,{\frac{-4\,\textit{A}_{{\textit{1}}} \,{\omega }^{2}+4\,\textit{A}_{{\textit{1}}} \,{\textit{w1}}^{2}}{\textit{A}_{{\textit{1}}}\,\omega }} \end{aligned}$$
(77)

Similarly, averaging the second governing equation (5) gives,

$$\begin{aligned} \dot{A}_2&=1/8\, \left( 4\,\textit{A}_{{\textit{1}}} \,\cos \left( \omega \,\tau +\theta \right) -4\,\textit{A2} \right) \textit{B}_{{\textit{D}}}\nonumber \\&\quad -1/2\,{\frac{\textit{A}_{{\textit{1}}}\,\sin \left( \omega \,\tau +\theta \right) \textit{B}_{{\textit{R}}}}{\omega }}\nonumber \\&\quad +1/8\, \left( -{\textit{A}_{{\textit{2}}}}^{3} +4\,\textit{A}_{{\textit{2}}} \right) \lambda , \end{aligned}$$
(78)
$$\begin{aligned} \dot{\phi }_2&=3/8\,{\frac{{\textit{A}_{{\textit{2}}}}^{2}\beta }{\omega }} -1/2\,{\frac{\textit{A}_{{\textit{1}}}\,\sin \left( \omega \,\tau +\theta \right) \textit{B}_{{\textit{D}}}}{\textit{A}_{{\textit{2}}}}}\nonumber \\&\quad -1/8\,{\frac{ \left( 4\,\textit{A}_{{\textit{1}}}\,\cos \left( \omega \,\tau +\theta \right) -4\,\textit{A}_{{\textit{2}}}\right) \textit{B}_{{\textit{R}}}}{\textit{A}_{{\textit{2}}}\,\omega }}\nonumber \\&\quad -1/8\,{\frac{4\,\textit{A}_{{\textit{2}}}\,{\omega }^{2} -4\,\textit{A}_{{\textit{2}}}\,{\omega _2}^{2}}{\textit{A}_{{\textit{2}}}\,\omega }}. \end{aligned}$$
(79)

where, \(\theta =\phi _2-\phi _1\) is the phase difference between the oscillators. The averaged equations can again be reduced to a three dimensional form as,

$$\begin{aligned} \dot{A}_1&=\frac{\lambda }{8} (4A_1-A_1^3) -\frac{B_R}{2\omega }A_2 \sin {(\omega \tau -\theta )} \nonumber \\&\quad +\frac{B_D}{2}[A_2 \cos {(\omega \tau -\theta )}-A_1], \end{aligned}$$
(80)
$$\begin{aligned} \dot{A}_2&=\frac{\lambda }{8} (4A_2-A_2^3) -\frac{B_R}{2\omega }A_1 \sin {(\omega \tau +\theta )}\nonumber \\&\quad +\frac{B_D}{2}[A_1 \cos {(\omega \tau +\theta )}-A_2], \end{aligned}$$
(81)
$$\begin{aligned} \dot{\theta }&=\varDelta +\frac{3\beta }{8\omega } (A_2^2-A_1^2)\nonumber \\&\quad +\frac{B_R}{2\omega } \left[ \frac{A_2}{A_1}\cos {(\omega \tau -\theta )} -\frac{A_1}{A_2}\cos {(\omega \tau +\theta )}\right] ...\nonumber \\&\quad +\frac{B_D}{2} \left[ \frac{A_2}{A_1}\sin {(\omega \tau -\theta )} -\frac{A_1}{A_2}\sin {(\omega \tau +\theta )}\right] . \end{aligned}$$
(82)

where \(\varDelta =\frac{\omega ^2_2-\omega ^2_1}{2\omega }\approx \omega _2-\omega _1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govind, M., Pandey, M. Nonlinear normal mode-based study of synchronization in delay coupled limit cycle oscillators. Nonlinear Dyn 111, 15767–15799 (2023). https://doi.org/10.1007/s11071-023-08631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08631-3

Keywords

Mathematics Subject Classification

Navigation