Skip to main content
Log in

Existence of nonlinear normal modes for coupled nonlinear oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We prove the existence of nonlinear normal modes for general systems of two coupled nonlinear oscillators. Facilitating the comparison principle for ordinary differential equations, it is shown that there exist exact solutions representing a vibration in unison of the system. The associated spatially localised time-periodic solutions feature out-of-phase and in-phase motion of the oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holmes, M.H.: Introduction to Perturbation Methods (Texts in Applied Mathematics), vol. 20. Springer, New York (1995)

    Book  Google Scholar 

  2. Rosenberg, R.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 30, 7 (1962)

  3. Rosenberg, R.: Advances of Applied Mechanics, vol. 9. Academic Press, New York (1966)

    Google Scholar 

  4. Shaw, S., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150, 170 (1991)

    Article  MathSciNet  Google Scholar 

  5. Shaw, S., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164, 85 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mishra, A.K., Singh, M.S.: The normal modes of nonlinear symmetric systems by group representation theory. Int. J. Nonlinear Mech. 9, 463 (1974)

  7. Montaldi, J., Roberts, M., Stewart, I.: Existence of nonlinear normal modes of symmetric Hamiltonian systems. Nonlinearity 3, 695 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ortega, J.-P.: Relative normal modes for nonlinear Hamiltonian systems. Proc. R. Soc. Edinb. A 133, 665 (2003)

    Article  MATH  Google Scholar 

  9. James, G., Noble, P.: Weak coupling limit and localized oscillations in Euclidean invariant Hamiltonian systems. J. Nonlinear Sci. 18, 433 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vakakis, A., Manevitch, L., Mikhlin, Y., Pilipchuk, V., Zevin, A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  11. Rand, R.: A higher order approximation for non-linear normal modes in two degree of freedom systems. Int. J. Non-Linear Mech. 6, 545 (1971)

    Article  MATH  Google Scholar 

  12. Eilbeck, J.C., Lomdahl, P.S., Scott, A.C.: The discrete self-trapping equation. Phys. D 16, 318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vakakis, A.F.: Nonsimilar normal oscillations in a stronglynonlinear discrete system. J. Sound Vib. 158, 341 (1992)

  14. Hennig, D.: Energy exchange dynamics of the DNLS lattice and intrinsic formation of strongly localized states. Phys. Rev. E 56, 31010 (1997)

  15. Pilipchuk, V.: Impact modes in discrete vibrating systems with rigid barriers. Int. J. Non-Linear Mech. 36, 999 (2001)

    Article  MATH  Google Scholar 

  16. Avramov, K.V.: Analysis of forced vibrations by nonlinear modes. Nonlinear Dyn. 53, 117 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chechin, G.M., Sakhnenko, V.P., Stokes, H.T., Smith, A.D., Hatch, D.M.: Non-linear normal modes for systems with discrete symmetry. Int. J. Non-Linear Mech. 35, 497 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Belizzi, S., Bouc, R.: A new formulation for the existence and calculation of nonlinear normal modes. J. Sound Vib. 287, 545 (2005)

  19. Avramov, K.V., Mikhlin, Y.V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65, 020801 (2013)

  20. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

  21. Aubry, A., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Phys. B 296, 222 (2001)

    Article  Google Scholar 

  22. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2009)

    Google Scholar 

  23. Jiang, D., Pierre, C., Shaw, S.W.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 272, 869 (2004)

  24. Vestroni, F., Luongo, A., Paolone, A.: A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dyn. 54, 379 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Marin, J.L., Aubry, S.: Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit. Nonlinearity 9, 1501 (1994)

  26. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 103, 201 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. MacKay, R.S., Sepulchre, J.A.: Stability of discrete breathers. Phys. D 119, 148 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Marin, J.L., Falo, F., Martinez, P.J., Flora, L.M.: Discrete breathers in dissipative lattices. Phys. Rev. E 63, 066603 (2001)

  29. Martinez, P.J., Meister, M., Floria, L.M., Falo, F.: Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile. Chaos 13, 610 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hennig, D.: Existence and non-existence of breather solutions in damped and driven nonlinear lattices. AIP Adv. 3, 102127 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hennig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennig, D. Existence of nonlinear normal modes for coupled nonlinear oscillators. Nonlinear Dyn 80, 937–944 (2015). https://doi.org/10.1007/s11071-015-1918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1918-3

Keywords

Navigation