Skip to main content

Advertisement

Log in

An iterative identification method for the dynamics and hysteresis of robots with elastic joints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamics-based methods have wide applications in the control of elastic joint robots. These methods require accurate robot dynamic parameters and hysteresis models of elastic elements for the controller designs. Existing independent identification procedures for the dynamic parameters and hysteresis models are challenging to efficiently implement without specific calibration equipment. In this paper, an iterative identification method that unifies the dynamic parameter identification and hysteresis model identification based on an energy identification model is proposed. This method can be conveniently implemented through simple trajectory tracking experiments. The energy identification model includes the elastic potential energy caused by the elastic elements with hysteresis. Any derivative of velocity can be avoided in this form. A two-step iterative strategy is proposed, including the initialization and main steps. The initialization step is implemented to obtain the a priori knowledge of the dynamic parameters as the initial values for iteration. The main step aims to identify the hysteresis model and dynamic parameters iteratively. Experiments on a two-degrees-of-freedom elastic joint robot verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All related data is available in the manuscript. However, the data will be made available upon request.

References

  1. Zhang, T., Xia, J.: Interconnection and damping assignment passivity-based impedance control of a compliant assistive robot for physical human-robot interactions. IEEE Robot. Auto. Lett. 4(2), 538–545 (2019). https://doi.org/10.1109/lra.2019.2891434

    Article  Google Scholar 

  2. Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Rob. 31(5), 1089–1100 (2015). https://doi.org/10.1109/TRO.2015.2457314

    Article  Google Scholar 

  3. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems Human Robot Interaction and Cooperative Robots1995, vol. 1, pp. 399–406

  4. Li, Y., Tong, S., Li, T.: Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn. 70(3), 2035–2048 (2012). https://doi.org/10.1007/s11071-012-0596-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, H., Zhang, Y., Zhao, Z., Tang, X., Yang, J., Chen, I.M.: Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots. Nonlinear Dyn. 106(1), 459–471 (2021). https://doi.org/10.1007/s11071-021-06868-4

    Article  Google Scholar 

  6. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2016). https://doi.org/10.1177/0278364907073776

    Article  MATH  Google Scholar 

  7. Albu-Schaffer, A., Hirzinger, G.: State feedback controller for flexible joint robots: a globally stable approach implemented on DLR's light-weight robots. In: Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat No00CH37113)2000, vol. 2, pp. 1087–1093

  8. Keppler, M., Lakatos, D., Ott, C., Albu-Schäffer, A.: Elastic structure preserving (esp) control for compliantly actuated robots. IEEE Trans. Rob. 34(2), 317–335 (2018). https://doi.org/10.1109/TRO.2017.2776314

    Article  Google Scholar 

  9. Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots*. IFAC Proc. Vol. 18(16), 95–100 (1985). https://doi.org/10.1016/S1474-6670(17)59942-5

    Article  Google Scholar 

  10. Giusti, A., Malzahn, J., Tsagarakis, N.G., Althoff, M.: On the combined inverse-dynamics/passivity-based control of elastic-joint robots. IEEE Trans. Rob. 34(6), 1461–1471 (2018). https://doi.org/10.1109/TRO.2018.2861917

    Article  Google Scholar 

  11. De Luca, A., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41(10), 1809–1819 (2005). https://doi.org/10.1016/j.automatica.2005.05.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991). https://doi.org/10.1109/9.90238

    Article  MathSciNet  Google Scholar 

  13. Spyrakos-Papastavridis, E., Childs, P.R.N., Dai, J.S.: Passivity preservation for variable impedance control of compliant robots. IEEE/ASME Trans. Mechatron. 25(5), 2342–2353 (2020). https://doi.org/10.1109/TMECH.2019.2961478

    Article  Google Scholar 

  14. Keppler, M., Raschel, C., Wandinger, D., Stemmer, A., Ott, C.: Robust stabilization of elastic joint robots by ESP and PID control: theory and experiments. IEEE Robot. Auto. Lett. 7(3), 8283–8290 (2022). https://doi.org/10.1109/LRA.2022.3187277

    Article  Google Scholar 

  15. Moyr, J., x00F, Moreno J.X., Valenzuela, S.J.: Nonlinear PI"D"-type control of flexible joint robots by using motor position measurements is globally asymptotically stable. IEEE Trans. Auto. Control., pp. 1–8 (2022). https://doi.org/10.1109/TAC.2022.3194043.

  16. Luca, A., Lucibello, P.: A general algorithm for dynamic feedback linearization of robots with elastic joints. In: Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat No98CH36146)1998, vol. 1, pp. 504–510

  17. Luca, A.D.: Feedforward/feedback laws for the control of flexible robots. Proceedings 2000 ICRA Millennium Conference In: IEEE International Conference on Robotics and Automation Symposia Proceedings (Cat No00CH37065), vol. 1, pp. 233–40 (2000)

  18. Spyrakos-Papastavridis, E., Fu, Z., Dai, J.S.: Power-shaping model-based control with feedback deactivation for flexible-joint robot interaction. IEEE Robot. Auto. Lett. 7(2), 4566–4573 (2022). https://doi.org/10.1109/LRA.2022.3144781

    Article  Google Scholar 

  19. Swevers, J., Verdonck, W., Schutter, J.D.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007). https://doi.org/10.1109/MCS.2007.904659

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, Z., Pan, J., Papastavridis, E.S., Lin, Y.H., Zhou, X., Chen, X., et al.: A Lie theory based dynamic parameter identification methodology for serial manipulators. IEEE/ASME Trans. Mech., 1 (2020). https://doi.org/10.1109/TMECH.2020.3044758

  21. Huang, S., Cheng, J., Zhang, J., Zhu, Z., Zhou, H., Li, F. et al.: Robust estimation for an extended dynamic parameter set of serial manipulators and unmodeled dynamics compensation. IEEE/ASME Trans. Mech, 1 (2021). https://doi.org/10.1109/TMECH.2021.3076519.

  22. Jia, J., Zhang, M., Li, C., Gao, C., Zang, X., Zhao, J.: Improved dynamic parameter identification method relying on proprioception for manipulators. Nonlinear Dyn. 105(2), 1373–1388 (2021). https://doi.org/10.1007/s11071-021-06612-y

    Article  Google Scholar 

  23. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integrated Manuf. 26(5), 414–419 (2010). https://doi.org/10.1016/j.rcim.2010.03.013

    Article  Google Scholar 

  24. Gautier, M.: Dynamic identification of robots with power model. In: Proceedings of International Conference on Robotics and Automation, vol. 3, pp. 1922–1927 (1997)

  25. Gautier, M., Poignet, P.: Extended Kalman filtering and weighted least squares dynamic identification of robot. Control. Eng. Pract. 9(12), 1361–1372 (2001). https://doi.org/10.1016/S0967-0661(01)00105-8

    Article  Google Scholar 

  26. Gu, Y., Wang, H., Cho, J.H., Lee, D.Y.: Identification of dynamic parameters of an industrial robot using a recursively-optimized trajectory. In: ICCAS 2010, pp. 1450–1455 (2010)

  27. Presse, C., Gautier, M.: New criteria of exciting trajectories for robot identification. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 3, p. 907–912 (1993)

  28. Ayusawa, K., Rioux, A., Yoshida, E., Venture, G., Gautier, M.: Generating persistently exciting trajectory based on condition number optimization. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). pp. 6518–6524 (2017)

  29. Han, Y., Wu, J., Liu, C., Xiong, Z.: An iterative approach for accurate dynamic model identification of industrial robots. IEEE Trans. Rob. 36(5), 1577–1594 (2020). https://doi.org/10.1109/TRO.2020.2990368

    Article  Google Scholar 

  30. Ni, H., Zhang, C., Hu, T., Wang, T., Chen, Q., Chen, C.: A dynamic parameter identification method of industrial robots considering joint elasticity. Int. J. Adv. Robot. Sys. 16(1) (2019). https://doi.org/10.1177/1729881418825217

  31. Yin, W., Sun, L., Wang, M., Liu, J., Chen, X.: Design and parameters identification of flexible joint robot. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1297–1302 (2017)

  32. Miranda-Colorado, R., Moreno-Valenzuela, J.: Experimental parameter identification of flexible joint robot manipulators. Robotica 36(3), 313–332 (2018). https://doi.org/10.1017/S0263574717000224

    Article  Google Scholar 

  33. Petrea, R.A.B., Oboe, R.: A DOB-based Parameter Identification method for Series Elastic Actuators without Load-side Encoder.In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1755–1762 (2022)

  34. Jin, H., Liu, Z., Zhang, H., Liu, Y., Zhao, J.: A dynamic parameter identification method for flexible joints based on adaptive control. IEEE/ASME Trans. Mechatron. 23(6), 2896–2908 (2018). https://doi.org/10.1109/TMECH.2018.2873232

    Article  Google Scholar 

  35. Ruderman, M., Iwasaki, M.: Sensorless Torsion control of elastic-joint robots with hysteresis and friction. IEEE Trans. Industr. Electron. 63(3), 1889–1899 (2016). https://doi.org/10.1109/TIE.2015.2453415

    Article  Google Scholar 

  36. Taghirad, H.D., Be´langer, P.R.: Modeling and parameter identification of harmonic drive systems. J. Dyn. Syst. Measure. Control 120(4):439–444 (1998) . https://doi.org/10.1115/1.2801484

  37. Ruderman, M., Bertram, T., Iwasaki, M.: Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 24(5), 407–415 (2014). https://doi.org/10.1016/j.mechatronics.2014.02.009

    Article  Google Scholar 

  38. Ruderman, M., Hoffmann, F., Bertram, T.: Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans. Industr. Electron. 56(10), 3840–3847 (2009). https://doi.org/10.1109/TIE.2009.2015752

    Article  Google Scholar 

  39. Sutor, A., Rupitsch, S.J., Bi, S., Lerch, R.: A modified Preisach hysteresis operator for the modeling of temperature dependent magnetic material behavior. J. Appl. Phys. 109(7), 07D338 (2011). https://doi.org/10.1063/1.3562520

    Article  Google Scholar 

  40. Ramesh, A.: Modeling the Creep Behavior of Torsional Springs, p. 146. The University of North Carolina at Charlotte, Ann Arbor (2009)

    Google Scholar 

  41. Brokate, M., Sprekels, J.: Hysteresis Operators. In: Brokate, M., Sprekels, J. (eds) Hysteresis and Phase Transitions. Springer New York, New York, NY, pp. 121–222 (1996)

  42. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Contr. 109(4), 310–318 (1987). https://doi.org/10.1115/1.3143860

    Article  MATH  Google Scholar 

  43. Janaideh, M.A., Rakheja, S., Su, C.-Y.: A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Mater. Struct. 18(4), 045001 (2009). https://doi.org/10.1088/0964-1726/18/4/045001

  44. Lynch KM, Park FC. Modern Robotics. Cambridge University Press, Cambridge (2017)

  45. Gautier, M., Khalil, W.: A direct determination of minimum inertial parameters of robots. In: Proceedings 1988 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1682–1687 (1988)

  46. Gu, G., Zhu, L., Su, C.: Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl-Ishlinskii Model. IEEE Trans. Industr. Electron. 61(3), 1583–1595 (2014). https://doi.org/10.1109/TIE.2013.2257153

    Article  Google Scholar 

  47. Swevers, J., Ganseman, C., Tukel, D.B., Schutter J.D., Brussel, H.V.: Optimal robot excitation and identification. IEEE Trans. Robot. Auto. 13(5), 730–740 (1997). https://doi.org/10.1109/70.631234

  48. Davis, P.J., Rabinowitz, P.: Chapter 2: approximate integration over a finite interval. In: Davis, P.J., Rabinowitz, P. (eds.) Methods of Numerical Integration (Second Edition), pp. 51–198. Academic Press (1984)

    Google Scholar 

  49. Zollo, L., Luca, A.D., Siciliano, B.: Regulation with on-line gravity compensation for robots with elastic joints. In: IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA '04 2004, Vol. 3, pp. 2687–2692 (2004)

Download references

Funding

The work was supported by the National Natural Science Foundation of China [Grant No. 91648112].

Author information

Authors and Affiliations

Authors

Contributions

JZ: Conceptualization, Methodology, Software, Investigation, Data curation, Writing original draft. BZ: Validation, Supervision, Funding acquisition.

Corresponding author

Correspondence to Bo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The independent identification processes for the dynamic parameters [32] and hysteresis models [38] are applied in Case 2 of the trajectory-tracking experiment. The following is a brief introduction to their implementation in this paper.

  1. 1.

    The independent identification of the dynamic parameters [32].

    We perform steps similar to those in [32] and derive a regression equation with the base parameter set based on filter dynamics. The regression equation is solved with the LS algorithm. We perform the same trajectories as used in the experiments in [32] to collect the signals for the observation matrix. The trajectories are as follows:

    $${\text{q}}_{{\text{d}}} (t) = \frac{\pi }{60}\left[ {\begin{array}{*{20}c} {{\text{sin}}(2\pi t) + {\text{sin}}\left(\pi t + \frac{\pi }{6}\right) + {\text{sin}}\left(0.4\pi t + \frac{\pi }{4}\right)} \\ {{\text{sin}}(0.4\pi t) + {\text{sin}}\left(2\pi t + \frac{\pi }{5}\right) + {\text{sin}}\left(\pi t + \frac{\pi }{2}\right)} \\ \end{array} } \right]{\text{(rad}})$$
  2. 2.

    The independent identification for the hysteresis models [38],

    This method utilizes a series of data samples from the motor side to calculate the joint torques and torsions. Joint one and joint two sequentially track trajectories similar to those in [38] to obtain the relevant data, and the trajectory is displayed as follows:

    $${\text{q}}_{{{\text{d}}_{j} }} (t) = \frac{\pi }{2}( - 0.02t + \, 1) \, (sin(0.2\pi t - 1.5\pi ))({{rad}})$$

    The MPI model (11) is also applied in this method to fit the hysteresis loops. It is notable that the friction data are needed to calculate the joint torque, in which the friction parameters are obtained by the above independent identification process for dynamic parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, B. An iterative identification method for the dynamics and hysteresis of robots with elastic joints. Nonlinear Dyn 111, 13939–13953 (2023). https://doi.org/10.1007/s11071-023-08597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08597-2

Keywords

Navigation