Skip to main content
Log in

Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a robust finite-time control scheme for the high-precision tracking problem of (FJRs) with various types of unpredictable disturbances. Specifically, based on a flatness dynamic model, a finite-time disturbance observer (FTDO) with only link-side position measurements is firstly developed to estimate the lumped unknown time-varying disturbance and unmeasurable states. Then, through the information of the states and disturbances provided by the FTDO, a robust output feedback controller is constructed, which can accomplish the tasks of disturbance suppression and trajectory tracking in finite time. Moreover, a rigorous stability analysis of the closed-loop system based on a finite-time bounded (FTB) function is conducted. Finally, the simulation results validate the feasibility and superiority of the proposed control scheme against other existing control results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ozgoli, S., Taghirad, H.: A survey on the control of flexible joint robots. Asian J. Control 8(4), 332–344 (2006)

    Article  MathSciNet  Google Scholar 

  2. Wang, H., Pan, Y., Li, S., Yu, H.: Robust sliding mode control for robots driven by compliant actuators. IEEE Trans. Control Syst. Technol. 27(3), 1259–1266 (2018)

    Article  Google Scholar 

  3. Li, X., Pan, Y., Chen, G., Yu, H.: Multi-modal control scheme for rehabilitation robotic exoskeletons. Int. J. Robotics Res. 36(5–7), 759–777 (2017)

    Article  Google Scholar 

  4. Weng, C., Yuan, Q., Suárez-Ruiz, F., Chen, I.: A telemanipulation-based human–robot collaboration method to teach aerospace masking skills. IEEE Trans. Ind. Inf. 16(5), 3076–3084 (2020)

    Article  Google Scholar 

  5. Li, T., Duan, S., Liu, J., Wang, L., Huang, T.: A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 582–588 (2015)

    Article  Google Scholar 

  6. Moberg, S., Hanssen, S.: On feedback linearization for robust tracking control of flexible joint robots. IFAC Proceedings Volumes 41(2), 12,218-12,223 (2008)

    Article  Google Scholar 

  7. Soltanpour, M.R., Moattari, M., et al.: Voltage based sliding mode control of flexible joint robot manipulators in presence of uncertainties. Robot. Auton. Syst. 118, 204–219 (2019)

    Article  Google Scholar 

  8. Kim, J., Croft, E.A.: Full-state tracking control for flexible joint robots with singular perturbation techniques. IEEE Trans. Control Syst. Technol. 27(1), 63–73 (2017)

    Article  Google Scholar 

  9. Pan, Y., Li, X., Wang, H., Yu, H.: Continuous sliding mode control of compliant robot arms: a singularly perturbed approach. Mechatronics 52, 127–134 (2018)

    Article  Google Scholar 

  10. Jin, M., Lee, J., Tsagarakis, N.G.: Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 64(2), 1706–1715 (2016)

    Article  Google Scholar 

  11. Li, Z., Ge, Q., Ye, W., Yuan, P.: Dynamic balance optimization and control of quadruped robot systems with flexible joints. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1338–1351 (2015)

    Article  Google Scholar 

  12. Chang, W., Li, Y., Tong, S.: Adaptive fuzzy backstepping tracking control for flexible robotic manipulator. IEEE/CAA J. Automatica Sinica (2018)

  13. Chang, Y.C., Yen, H.M.: Design of a robust position feedback tracking controller for flexible-joint robots. IET Control Theory Appl. 5(2), 351–363 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ghahramani, N.O., Towhidkhah, F.: Constrained incremental predictive controller design for a flexible joint robot. ISA Trans. 48(3), 321–326 (2009)

    Article  Google Scholar 

  15. Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robotics 24(2), 416–429 (2008)

    Article  Google Scholar 

  16. Yang, J., Li, T., Liu, C., Li, S., Chen, W.H.: Nonlinearity estimator-based control of a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 65, 2230–2236 (2020)

    Article  MathSciNet  Google Scholar 

  17. Long, Y., Du, Z., Cong, L., Wang, W., Zhang, Z., Dong, W.: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans. 67, 389–397 (2017)

    Article  Google Scholar 

  18. Zhu, W., Du, H., Li, S., Yu, X.: Design of output-based finite-time convergent composite controller for a class of perturbed second-order nonlinear systems. IEEE Trans. Syst. Man Cyberne. Syst. (2020)

  19. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1863–1874 (2016)

    Article  Google Scholar 

  20. Liu, X., Yang, C., Chen, Z., Wang, M., Su, C.Y.: Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 275, 73–82 (2018)

    Article  Google Scholar 

  21. Ling, S., Wang, H., Liu, P.X.: Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation. IEEE/CAA J. Automatica Sinica 6(1), 97–107 (2019)

    Article  MathSciNet  Google Scholar 

  22. Chang, Y.C., Yen, H.M.: Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. Int. J. Control 85(2), 194–212 (2012)

    Article  MathSciNet  Google Scholar 

  23. Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robotics 25(2), 428–437 (2009)

    Article  Google Scholar 

  24. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans. Neural Netw. 19(10), 1712–1726 (2008)

    Article  Google Scholar 

  25. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2009)

    Article  Google Scholar 

  26. Du, H., Qian, C., Li, S., Chu, Z.: Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatica 99, 403–411 (2019)

    Article  MathSciNet  Google Scholar 

  27. Yang, J., Sun, J., Zheng, W.X., Li, S.: Periodic event-triggered robust output feedback control for nonlinear uncertain systems with time-varying disturbance. Automatica 94, 324–333 (2018)

    Article  MathSciNet  Google Scholar 

  28. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  29. Fang, L., Ma, L., Ding, S., Park, J.H.: Finite-time stabilization of high-order stochastic nonlinear systems with asymmetric output constraints. IEEE Trans. Syst. Man Cybern. Syst. (2020)

  30. Wang, H., Zhang, Q., Sun, Z., Tang, X., Chen, I.M.: Continuous terminal sliding-mode control for FJR subject to matched/mismatched disturbances. IEEE Trans. Cybern. (2021)

  31. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  32. Li, S., Sun, H., Yang, J., Yu, X.: Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans. Autom. Control 60(1), 277–282 (2014)

    Article  MathSciNet  Google Scholar 

  33. Mao, J., Yang, J., Liu, X., Li, S., Li, Q.: Modeling and robust continuous TSM control for an inertially stabilized platform with couplings. IEEE Trans. Control Syst. Technol. (2019)

  34. Zhao, Z., Cao, D., Yang, J., Wang, H.: High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics. Nonlinear Dyn. 102(4), 2583–2596 (2020)

    Article  Google Scholar 

  35. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, Hoboken (2008)

    Google Scholar 

  36. Ryu, J.C., Agrawal, S.K.: Differential flatness-based robust control of mobile robots in the presence of slip. Int. J. Robotics Res. 30(4), 463–475 (2011)

    Article  Google Scholar 

  37. Sira-Ramírez, H., Linares-Flores, J., García-Rodríguez, C., Contreras-Ordaz, M.A.: On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans. Control Syst. Technol. 22(5), 2056–2063 (2014)

    Article  Google Scholar 

  38. Zhao, Z., Yang, J., Li, S., Yu, X., Wang, Z.: Continuous output feedback TSM control for uncertain systems with a DC–AC inverter example. IEEE Trans. Circuits Syst. II Express Briefs 65(1), 71–75 (2017)

    Article  Google Scholar 

  39. Wang, H., Peng, W., Tan, X., Sun, J., Tang, X., Chen, I.M.: Robust output feedback tracking control for flexible-joint robots based on CTSMC technique. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1982–1986 (2020)

    Article  Google Scholar 

  40. Li, S., Tian, Y.P.: Finite-time stability of cascaded time-varying systems. Int. J. Control 80(4), 646–657 (2007)

    Article  MathSciNet  Google Scholar 

  41. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  Google Scholar 

  42. Fang, L., Ding, S., Park, J.H., Ma, L.: Adaptive fuzzy control for nontriangular stochastic high-order nonlinear systems subject to asymmetric output constraints. IEEE Trans. Cybern. (2020)

  43. Du, H., Chen, X., Wen, G., Yu, X., Lü, J.: Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Trans. Ind. Electron. 65(12), 9916–9927 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Natural Science Foundation of China (61803059, 61903192), in part by National Robotics Program, RDS, SERC, Singapore (1922200001), and in part by Foundation of Chongqing University of Posts and Telecommunications (A2017-74, A2017-15).

Appendix

Appendix

\(\varvec{\tau }\) is the following

$$\begin{aligned} \begin{aligned} \varvec{\tau }&=\varvec{J}{{{\dot{\varvec{x}}}}_{4}}+\varvec{B}{\varvec{{x}}_{4}}+\varvec{K}\left( {\varvec{x}_{3}}-{\varvec{x}_{1}} \right) -{\varvec{w}_{2}} \\&=\frac{\varvec{J}}{\varvec{K}}\left( \varvec{M}\left( \varvec{z} \right) {\varvec{z}^{\left( 4 \right) }}+ 2\dot{\varvec{M}}\left( \varvec{z} \right) {\varvec{{z}}^{\left( 3 \right) }}+\right. \ddot{\varvec{M}}\left( \varvec{z} \right) \ddot{\varvec{z}} +\varvec{C}\left( \varvec{z},\dot{\varvec{z}} \right) {\varvec{z}^{\left( 3 \right) }}\\&\quad +2\dot{\varvec{C}}\left( \varvec{z},\dot{\varvec{z}} \right) \ddot{\varvec{z}} +\ddot{\varvec{C}}\left( \varvec{ z},\dot{\varvec{z}} \right) \dot{\varvec{z}}+ \varvec{K}{\ddot{\varvec{z}}} +\ddot{\varvec{G}}\left( \varvec{z} \right) -{{{\ddot{\varvec{{w}}}}}_{1}} \Big ) +\frac{\varvec{B}}{\varvec{K}} \\&\quad \Big ( \varvec{M}\left( \varvec{z} \right) {\varvec{z}^{\left( 3 \right) }}+\dot{\varvec{M}}\left( \varvec{z} \right) \ddot{\varvec{z}} + \varvec{C}\left( \varvec{z},\dot{\varvec{z}} \right) \ddot{\varvec{z}} +\dot{\varvec{C}}\left( \varvec{z},\dot{\varvec{z}} \right) \dot{\varvec{z}} +\varvec{K}\dot{\varvec{z}} \\&\quad +\dot{\varvec{G}}\left( \varvec{z} \right) -{{{\dot{\varvec{\omega }}}}_{1}} \Big ) +\varvec{M}\left( \varvec{z} \right) \ddot{\varvec{z}} + \varvec{C}(z,\dot{z})\dot{\varvec{z}}+\varvec{G}\left( \varvec{z} \right) -{\varvec{w}_{1}} -{\varvec{w}_{2}} \\&=\frac{\varvec{JM}\left( \varvec{z} \right) }{\varvec{K}}{\varvec{z}^{\left( 4 \right) }}+ \frac{2\varvec{J}\dot{\varvec{M}}( \varvec{z} ) + \varvec{BM}(\varvec{z})+\varvec{JC}( \varvec{z},\dot{\varvec{z}})}{\varvec{K}} {\varvec{z}^{\left( 3 \right) }} \\&\quad + \Bigg (\frac{\varvec{J}\ddot{\varvec{M}}( \varvec{z} )+2\varvec{J}\dot{\varvec{C}} ( \varvec{z},\dot{\varvec{z}} )}{\varvec{K}}+\frac{\varvec{B}\dot{\varvec{M}}\left( \varvec{z} \right) +\varvec{BC}( \varvec{z},\dot{\varvec{z}} )}{\varvec{K}} + \varvec{M}( \varvec{z} ) \\&\quad +\varvec{J} \Bigg )\ddot{\varvec{z}} + \left( \frac{\varvec{J}\ddot{\varvec{C}}\left( \varvec{z},\dot{\varvec{z}} \right) }{\varvec{K}}+\frac{\varvec{B}\dot{\varvec{C}}\left( \varvec{z},\dot{\varvec{z}} \right) }{\varvec{K}} +\varvec{C}\left( \varvec{z},\dot{\varvec{z}} \right) +\varvec{B} \right) \dot{\varvec{z}}\\&\quad +\frac{\varvec{J}}{\varvec{K}}\Big ( \ddot{\varvec{G}}\left( \varvec{z} \right) -{{{\ddot{\varvec{\omega }}}}_{1}} \Big ) +\frac{\varvec{B}}{\varvec{K}}\left( \dot{\varvec{G}}\left( \varvec{z} \right) -{{{\dot{\varvec{\omega }}}}_{1}} \right) + \varvec{G}\left( \varvec{z} \right) -{\varvec{\omega }_{1}} \\&\quad -{\varvec{\omega }_{2}}. \\ \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Y., Zhao, Z. et al. Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots. Nonlinear Dyn 106, 459–471 (2021). https://doi.org/10.1007/s11071-021-06868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06868-4

Keywords

Navigation