Skip to main content

Advertisement

Log in

Stability and Hopf bifurcation on an immunity delayed HBV/HCV model with intra- and extra-hepatic coinfection and saturation incidence

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A hepatitis B or C virus (HBV or HCV) epidemic model with intra- and extra-hepatic coinfection, immune delay and saturation incidence, as well as antiviral therapy is proposed in this paper. The existence of equilibria (infection-free, immune-free and immune-activated), the basic reproduction numbers, i.e., \(R_{0}\), \(R_{1}\), are given respectively, by which the criteria on (local and global) stability of above equilibria are established. Furthermore, if the immune delay \(\tau >\tau _{0}\), both the existence of subcritical (supercritical) Hopf bifurcation on the immune-activated equilibrium \(E^{*}\), and the stability of bifurcating periodic solutions are obtained. Finally, the theoretical results are demonstrated by numerical simulations. We derive that the immune delay and intra- and extra-hepatic coinfection have significant influence on the transmission of HBV/HCV, could cause more complicated dynamics at \(E^{*}\) from stability to unstablity untill bifurcation, which greatly increases the difficulty of disease control. While effective antiviral therapy could evidently decrease the spread of HBV/HCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Organisation, W.H.: Hepatitis Pandemic. https://www.who.int/health-topics/hepatitis. Retrieved: 15/10/2022

  2. Bonhoeffer, S., May, R.M., Shaw, G.M., et al.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. U. S. A. 94(13), 6971–6976 (1997). https://doi.org/10.1073/pnas.94.13.6971

    Article  Google Scholar 

  3. Nowak, M., Bonhoeffer, S., Hill, A., et al.: Viral dynamics in hepatitis B infection. Proc. Natl. Acad. Sci. U. S. A. 93(9), 4398–4402 (1996). https://doi.org/10.1073/pnas.93.9.4398

    Article  Google Scholar 

  4. Wang, K.F., Wang, W.D., Pang, H., et al.: Complex dynamic behavior in a viral model with delayed immune response. Physica D 226(2), 197–208 (2007). https://doi.org/10.1016/j.physd.2006.12.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Mehmood, M., Hamid, M., Ashraf, S., et al.: Galerkin time discretization for transmission dynamics of HBV with non-linear saturated incidence rate. Appl. Math. Comput. 410(1), 1–18 (2021). https://doi.org/10.1016/j.amc.2021.126481

    Article  MathSciNet  MATH  Google Scholar 

  6. Pal, S., Anal, C.: Dynamics of the interaction of plankton and planktivorous fish with delay. Cogent Math. 2, 1–27 (2015). https://doi.org/10.1080/23311835.2015.1074337

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, H., Wei, J.J.: Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response. Nonlinear Dyn. 82(1–2), 713–722 (2015). https://doi.org/10.1007/s11071-015-2189-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Guidotti, L.G., Ishikawa, T., Hobbset, M., et al.: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4(1), 25–36 (1996). https://doi.org/10.1016/S1074-7613(00)80295-2

    Article  Google Scholar 

  9. Seeger, C., Mason, W.S.: Molecular biology of hepatitis B virus infection. Virology 479, 672–686 (2015). https://doi.org/10.1016/j.virol.2015.02.031

    Article  Google Scholar 

  10. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent virus. Science 272, 74–79 (1996). https://doi.org/10.1126/science.272.5258.74

    Article  Google Scholar 

  11. Canabarro, A.A., Glerial, I.M., Lyra, M.L.: Periodic solutions and chaos in a non-linear model for the delayed cellular immune response. Phys. A 342(1–2), 234–241 (2004). https://doi.org/10.1016/j.physa.2004.04.083

    Article  Google Scholar 

  12. Bertoletti, A., Ferrari, C.: Kinetics of the immune response during HBV and HCV infection. Hepatology 38(1), 4–13 (2003). https://doi.org/10.1053/jhep.2003.50310

    Article  Google Scholar 

  13. Major, M.E., Mihalik, K., Fernandez, J., et al.: Long-term follow-up of chimpanzees inoculated with the first infectious clone for hepatitis C virus. J. Virol. 73(4), 3317–3325 (1999). https://doi.org/10.1128/JVI.73.4.3317-3325.1999

    Article  Google Scholar 

  14. Tian, X.H., Xu, R.: Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response. Appl. Math. Comput. 237, 146–154 (2014). https://doi.org/10.1016/j.amc.2014.03.091

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebert, D., Zschokke-Rohringer, C.D., Carins, H.J.: Does effects and density dependent regulation of two microparasites of Daphnia magna. Oecologia 122(2), 200–209 (2000). https://doi.org/10.1007/PL00008847

    Article  Google Scholar 

  16. Song, X., Neumann, A.U.: Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 329(1), 281–297 (2007). https://doi.org/10.1016/j.jmaa.2006.06.064

    Article  MathSciNet  MATH  Google Scholar 

  17. Berenguer, M., Prieto, M., Juan, F.S., et al.: Contribution of donor age to the recent decrease in patient survival among HCV-infected liver transplant recipients. Hepatology 36(1), 202–210 (2002). https://doi.org/10.1053/jhep.2002.33993

    Article  Google Scholar 

  18. Tsiang, M., Rooney, J., Toole, J., et al.: Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 29(6), 1863–1869 (1999). https://doi.org/10.1002/hep.510290626

    Article  Google Scholar 

  19. Pontisso, P., Poon, M.C., Tiollais, P., et al.: Detection of hepatitis B virus DNA in mononuclear blood cells. Brit. Med. J. 288(6430), 1563–1566 (1984). https://doi.org/10.1136/bmj.288.6430.1563

    Article  Google Scholar 

  20. Pontisso, P., Vidalino, L., Quarta, S., Gatta, A.: Biological and clinical implications of HBV infection in peripheral blood mononuclear cells. Autoimmun. Rev. 8(1), 13–17 (2008). https://doi.org/10.1016/j.autrev.2008.07.016

    Article  Google Scholar 

  21. Lanford, R.E., Michaels, M.G., Chavez, D., et al.: Persistence of extrahepatic hepatitis B virus DNA in the absence of detectable hepatic replication in patients with baboon liver transplants. J. Med. Virol. 46(3), 207–212 (1995). https://doi.org/10.1002/jmv.1890460307

    Article  Google Scholar 

  22. Mason, A., Theal, J., Bain, V., et al.: Hepatitis B virus replication in damaged endothelial tissues of patients with extrahepatic disease. Am. J. Gastroenterol. 100(4), 972–976 (2005). https://doi.org/10.1111/j.1572-0241.2005.41308.x

    Article  Google Scholar 

  23. Cacoub, P., Asselah, T.: Hepatitis B virus infection and extra-hepatic manifestations: a systemic disease. Am. J. Gastroenterol. 117(2), 253–263 (2022). https://doi.org/10.14309/ajg.0000000000001575

    Article  Google Scholar 

  24. Inoue, J., Ueno, Y., Kogure, T., et al.: Analysis of the full-length genome of hepatitis B virus in the serum and cerebrospinal fluid of a patient with acute hepatitis B and transverse myelitis. J. Clin. Virol. 41(4), 301–304 (2008). https://doi.org/10.1016/j.jcv.2008.01.002

    Article  Google Scholar 

  25. Kamiza, A.B., Su, F.H., Wang, W.C., et al. Chronic hepatitis infection is associated with extrahepatic cancer development: A nationwide population-based study in Taiwan. BMC Cancer 16, (2016). https://doi.org/10.1186/s12885-016-2918-5

  26. Rong, Q.F., Huang, J., Su, E.B., et al., Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells, Virol. J. 4, (2007). https://doi.org/10.1186/1743-422X-4-36

  27. Zheng, X.Y., Wei, R.B., Tang, L., et al.: Meta-analysis of combined therapy for adult hepatitis B virus-associated glomerulonephritis. World J. Gastroenterol. 18(8), 821–832 (2012). https://doi.org/10.3748/wjg.v18.i8.821

    Article  Google Scholar 

  28. Galun, E., Offensperger, W.B., Weizacker, F., et al.: Human non-hepatocytes support hepadnaviral replication and virion production. J. Gen. Viro. 73, 173–178 (1992). https://doi.org/10.1099/0022-1317-73-1-173

    Article  Google Scholar 

  29. Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. Gen. Virol. 84, 1743–1750 (2003). https://doi.org/10.1099/vir.0.19118-0

    Article  Google Scholar 

  30. Cui, J.A., Pang, J.H., Hui, J.: The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 67(1), 723–734 (2011). https://doi.org/10.1007/s11071-011-0022-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Dhar, M., Samaddar, S., Bhattacharya, P.: Modeling the effect of non-cytolytic immune response on viral infection dynamics in the presence of humoral immunity. Nonlinear Dyn. 98(1), 637–655 (2019). https://doi.org/10.1007/s11071-019-05219-8

    Article  MATH  Google Scholar 

  32. Qesmi, R., Wu, J., Wu, J.H., et al.: Influence of backward bifurcation in a model of hepatitis B and C viruses. Math. Biosci. 224(2), 118–125 (2010). https://doi.org/10.1016/j.mbs.2010.01.002

    Article  MathSciNet  MATH  Google Scholar 

  33. Carrozzo, M., Quadri, R., Latorre, P., et al.: Molecular evidence that the hepatitis C virus replicates in the oral mucosa. J. Hepatol. 37(3), 364–369 (2002). https://doi.org/10.1016/S0168-8278(02)00183-6

    Article  Google Scholar 

  34. Zhu, Q., Guo, J.T., Seeger, C.: Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells. J. Virol. 77(17), 9204–9210 (2003). https://doi.org/10.1128/JVI.77.17.9204-9210.2003

    Article  Google Scholar 

  35. De Vita, S., De Re, V., Sansonno, D., et al.: Gastric mucosa as an additional extrahepatic localization of hepatitis C virus: viral detection in gastric low-grade lymphoma associated with autoimmune disease and in chronic gastritis. Hepatology 31(1), 182–189 (2000). https://doi.org/10.1002/hep.510310127

    Article  Google Scholar 

  36. Dahari, H., Feliu, A., Garcia-Retortillo, M., et al.: Second hepatitis C replication compartment indicated by viral dynamics during liver transplantation. J. Hepatol. 42(4), 491–498 (2005). https://doi.org/10.1016/j.jhep.2004.12.017

    Article  Google Scholar 

  37. Hu, X.L., Li, J.Q., Feng, X.M.: Threshold dynamics of a HCV model with virus to cell transmission in both liver with CTL immune response and the extrahepatic tissue. J. Biol. Dyn. 15(1), 19–34 (2021). https://doi.org/10.1080/17513758.2020.1859632

    Article  MathSciNet  MATH  Google Scholar 

  38. Webmed: Combination Antiviral Therapy for Hepatitis C. http://www.webmd.com/hepatitis/combination-antiviral-therapy-for-hepatitis-c

  39. Webmed, Hepatitis Health Center: Hepatitis B medications. http://www.webmd.com/hepatitis/hepb-guide/hepatitis-b-medications

  40. Ribeiro, R., Lo, A., Perelson, A.: Dynamics of hepatitis B virus infection. Microbes Infect. 4(8), 829–835 (2002). https://doi.org/10.1016/S1286-4579(02)01603-9

    Article  Google Scholar 

  41. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  42. LaSalle, J.P.: The stability of dynamical systems. In: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1976)

  43. Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press Inc, Boston, MA (1993)

    MATH  Google Scholar 

  44. Hassard, B.D., Kazarinoff, N.D., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  45. Song, Y., Wei, J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solit. Fract. 22(1), 75–91 (2004). https://doi.org/10.1016/j.chaos.2003.12.075

    Article  MathSciNet  MATH  Google Scholar 

  46. Ciupe, S., Rebeiro, R., Nelson, P., et al.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247(1), 23–35 (2007). https://doi.org/10.1016/j.jtbi.2007.02.017

    Article  MathSciNet  MATH  Google Scholar 

  47. Hews, S., Eikenberry, S., Nagy, J., et al.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60(4), 573–590 (2010). https://doi.org/10.1007/s00285-009-0278-3

    Article  MathSciNet  MATH  Google Scholar 

  48. Ji, Y., Min, L., Zheng, Y., et al.: A viral infection model with periodic immune response and nonlinear CTL response. Math. Comput. Simul. 80(12), 2309–2316 (2010). https://doi.org/10.1016/j.matcom.2010.04.029

    Article  MathSciNet  MATH  Google Scholar 

  49. Prakash, M., Rakkiyappan, R., Manivannan, A.: Stability and bifurcation analysis of hepatitis B-type virus infection model. Math. Meth. Appl. Sci. 44(8), 6462–6481 (2021). https://doi.org/10.1002/mma.7198

    Article  MathSciNet  MATH  Google Scholar 

  50. Song, X.Y., Wang, S.L., Dong, J.: Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response. J. Math. Anal. Appl. 373(2), 345–355 (2011). https://doi.org/10.1016/j.jmaa.2010.04.010

    Article  MathSciNet  MATH  Google Scholar 

  51. Steven, H.S.: Nonlinear Dynamics and Chaos. Boca Raton London, New York (2015)

    Google Scholar 

  52. Ito, H., Yoshioka, K., Ukai, K., et al.: The fluctuations of viral load and serum alanine aminotransferase levels in chronic hepatitis C. Hepatol. Res. 30(1), 11–17 (2004). https://doi.org/10.1016/j.hepres.2004.06.002

    Article  Google Scholar 

  53. Ortiz, G.M., Hu, J., Goldwitz, J.A., et al.: Residual viral replication during antiretroviral therapy boosts human immunodeficiency virus type 1-specific CD8\(^{+}\) T-cell responses in subjects treated early after infection. J. Virol. 76(1), 411–415 (2002). https://doi.org/10.1128/JVI.76.1.411-415.2002

    Article  Google Scholar 

  54. Wang, Y., Liu, X.N.: Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays. Math. Comput. Simul. 138, 31–48 (2017). https://doi.org/10.1016/j.matcom.2016.12.011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the the Natural Science Foundation of Xinjiang Province, People’s Republic of China (2022D01E41), the National Natural Science Foundation of China (Grant Nos. 12261087, 11861065, 12262035), the Open Project of Key Laboratory of Applied Mathematics of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D04014), the Scientific Research Programmes of Colleges in Xinjiang, People’s Republic of China (Grant No. XJEDU2021I002, XJEDU2021Y001), the Postgraduate Research and Innovation Program of Xinjiang Uygur Autonomous Region, China (Grant No. XJ2022G020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Ethics declarations

Competing of interests

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The details in Sect. 3.2

$$\begin{aligned} F_{1}=&a_{l}+d_{l}+a_{e}+d_{e}+r+\gamma +\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}},\\ F_{2}=&a_{e}\gamma +(a_{e}+\gamma )\Big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big ) +a_{l}\Big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big )\\&+ \Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big )\Big (a_{l}+a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big ) \\&-k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}} -k_{e}(1-\epsilon ) \frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}},\\ F_{3}=&a_{e}\gamma \Big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big )+k_{e}(1-\epsilon ) \frac{\beta _{e}^{2}T_{e}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}\\&+a_{l}\Big (a_{e}\gamma + (a_{e}+\gamma )\big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\big )\Big )\\&+ \Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big )\Big ((a_{e}+\gamma )\big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{ (1)}}) +a_{l}\big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\big )+a_{e}\gamma \Big ) \\&+k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{*}V^{(1)}}{(1+\alpha V^{(1)})^{3}}-\Big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}+a_{l}\Big ) k_{e}(1-\epsilon ) \frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}} \\&-k_{l}(1-\epsilon ) \frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}}\Big (d_{e}+a_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big )\\&-\Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big )\Big (k_{l}(1-\epsilon ) \frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}}\\&+k_{e}(1-\epsilon ) \frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}}\Big ),\\ F_{4}=&a_{l}\Big (\big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\big )a_{e}\gamma + k_{e}(1-\epsilon ) \frac{\beta _{e}^{2}T_{e}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}\Big )\\&+k_{l}(1-\epsilon ) \frac{\beta _{l}^{2}T_{l}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}\Big (d_{e}+a_{e}\\&+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big )+\Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big ) \Big (a_{e}\gamma \big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\big )+ k_{e}(1-\epsilon ) \frac{\beta _{e}^{2}T_{e}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}\\&+\big (a_{e}\gamma +(a_{e}+\gamma ) \big (\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}+d_{e}\big )\big )a_{l}\Big )-a_{l}k_{e}(1-\epsilon ) \frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}}\\&\Big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big ) -a_{e}k_{l}(1-\epsilon ) \frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}} \Big (\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}+d_{e}\Big )-\Big (\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\\&+d_{l}\Big )\Big (\frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}} \big (d_{e}+a_{l}+\frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})}\big )+k_{l}(1-\epsilon ) \frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}}\big (d_{e}+a_{e}+\frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})}\big )\Big ),\\ F_{5}=&a_{l}\Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big )\Big (a_{e}\gamma \big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\big )+ k_{e}(1-\epsilon )\frac{\beta _{e}^{2}T_{e}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}\Big )+\Big (\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\\&+d_{e}\Big )a_{e}k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{(1)}V^{(1)}}{(1+\alpha V^{(1)})^{3}}-\Big (d_{l}+\frac{\beta _{l}V^{(1)}}{1+\alpha V^{(1)}}\Big ) \Big (d_{e}+\frac{\beta _{e}V^{(1)}}{1+\alpha V^{(1)}}\Big )\\&\Big (a_{l}k_{e}(1-\epsilon ) \frac{\beta _{e}T_{e}^{(1)}}{(1+\alpha V^{(1)})^{2}}+a_{e}k_{l}(1-\epsilon ) \frac{\beta _{l}T_{l}^{(1)}}{(1+\alpha V^{(1)})^{2}}\Big ). \end{aligned}$$

Appendix B: The details in Sect. 3.3

$$\begin{aligned}&A_{1}=a_{l}+d_{l}+a_{e}+d_{e}+r+\gamma +pZ^{*}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}},\\&A_{2}=r\Big (a_{l}+d_{l}+a_{e}+d_{e}+\gamma +pZ^{*}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )+\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )(a_{e}+\gamma ) \\&\quad +(a_{l}+pZ^{*})\Big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\\&\quad -k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}-k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big (a_{e}+d_{e}+a_{l}+\gamma +pZ^{*}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )+a_{e}\gamma ,\\&A_{3}=r\Big [a_{e}\gamma +\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )(a_{e}+\gamma )+\Big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )(a_{l}+pZ^{*})+\Big (d_{l}\\&\quad +\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \Big (a_{e}+d_{e}+a_{l}+\gamma +pZ^{*}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\Big ]+\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )a_{e}\gamma \\&\quad +k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}} +(a_{l}+pZ^{*})\Big (a_{e}\gamma +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )\Big )+\Big (d_{l}\\&\quad +\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big [\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )(a_{e}+\gamma )+a_{e}\gamma +(a_{l}+pZ^{*})\\&\quad \Big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\Big ]\\&\quad -\Big (d_{e}+a_{l}+r+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}} +pZ^{*} +\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+d_{l}\Big )k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}}{(1+\alpha V^{*})^{2}}\\&\quad -\Big (r+d_{e}+a_{e}+d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}}{(1+\alpha V^{*})^{2}},\\&A_{4}=r\Big [\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) a_{e}\gamma +(a_{l}+pZ^{*})\Big (a_{e}\gamma \\&\quad +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )\Big )+\Big (\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\\&\quad +d_{l}\Big )\Big ((a_{l}+pZ^{*})\big (a_{e}+d_{e}+\gamma +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )+a_{e}\gamma +\big (d_{e}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )\Big ) +k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big ]+k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{1}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big (a_{e}\\&\quad +d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )+\Big (\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\\&\quad +d_{l}\Big )a_{e}\gamma \Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) + \frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{2}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\\&\quad +(a_{l}+pZ^{*}) \Big (a_{e}\gamma +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )\\&\quad (a_{e}+\gamma )\Big )-r\Big [\Big (d_{e}+a_{e}+d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}} +\Big (\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\\&\quad +d_{e}+a_{l}+pZ^{*}+d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\Big ]\\&\quad -(a_{l}+pZ^{*}) \frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )-a_{e}\Big (d_{e}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )k_{l}(1-\epsilon )\frac{\beta _{l}T_{1}^{*}}{(1+\alpha V^{*})^{2}}-\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \Big [\Big (a_{l}+d_{e}\\&\quad +pZ^{*}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) \frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\Big (a_{e}+d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) \frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big ], \end{aligned}$$
$$\begin{aligned}&A_{5}=r\Big [(a_{l}+pZ^{*})\Big (\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) a_{e}\gamma +k_{e}(1-\epsilon )\frac{\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big )\\&\quad +\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big (a_{e}\gamma \\&\quad \big (\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}+d_{e}\big )+\frac{k_{e}(1-\epsilon ) \beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}+(a_{l}+pZ^{*})\\&\quad \big (a_{e}\gamma +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )\big )\Big )\\&\quad +k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\big (a_{e}+d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )\Big ]+\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) (a_{l}+pZ^{*}) \Big (a_{e}\gamma \big (d_{e}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )+k_{e}(1-\epsilon )\frac{\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big )+a_{e}\Big (d_{e}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) k_{l}(1-\epsilon )\frac{\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\\&\quad -ra_{e}(d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}) k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +(a_{l}+pZ^{*})\frac{ k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\Big (\frac{\beta _{e}V^{*}}{1+\alpha V^{*}} \\&\quad +d_{e}\Big )+\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big ( k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}} \\&\quad \big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}+a_{l}+pZ^{*}\big )\\&\quad +\big (a_{e}+d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big )-\Big (d_{l}\\&\quad +\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big ( \big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )\\&\quad (a_{l}+pZ^{*}) k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}+a_{e}\big (d_{e}\\&\quad +\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big ),\\&A_{6}=r\Big [\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )(a_{l}+pZ^{*}) \Big (\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )a_{e}\gamma \\&\quad + k_{e}(1-\epsilon ) \frac{\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{2}}\Big )\\&\quad + a_{e}\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )k_{l}(1-\epsilon )\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big ]\\&\quad -r \Big [a_{e}\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\frac{ k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )(a_{l}+pZ^{*})\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\Big ], \end{aligned}$$
$$\begin{aligned}&B_{1}=-qI_{l}^{*},\\&B_{2}=qZ^{*}pI_{l}^{*}-qI_{l}^{*}\Big (a_{l}+d_{l}+a_{e}+d_{e}+\gamma +pZ^{*}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+ \frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ),\\&B_{3}=qZ^{*}pI_{l}^{*}\Big (a_{e}+d_{e}+\gamma +d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}+ \frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\\&\quad +qI_{l}^{*}\Big (k_{e}(1-\epsilon )\frac{\beta _{e}T_{2}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big ) -qI_{l}^{*}\Big [a_{e}\gamma \\&\quad +\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )(a_{e}+\gamma ) +(a_{l}+pZ^{*})\Big (a_{e}+\gamma \\&\quad +d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )+\Big (a_{e}+\gamma +d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\\&\quad +a_{l}+pZ^{*}\Big )\Big (d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big ],\\&B_{4}=qZ^{*}pI_{l}^{*}\Big [a_{e}\gamma +\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) (a_{e}+\gamma )+\Big (d_{l}\\&\quad +\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big (a_{e}+\gamma + d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\Big ]\\&\quad +qI_{l}^{*}\Big [\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}+a_{l}+pZ^{*}+ d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\\&\quad \frac{ k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}+\Big (a_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\\&\quad +d_{e}+d_{l}+\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big ]-qZ^{*}pI_{l}^{*}\\&\quad \frac{k_{e}(1-\epsilon )\beta _{e}T_{2}^{*}}{(1+\alpha V^{*})^{2}}-qI_{l}^{*}\Big [\Big (\frac{\beta _{e}V^{*}}{1+\alpha V^{*}} \\&+d_{e}\Big )a_{e}\gamma +\frac{ k_{e}(1-\epsilon ) \beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}} +\Big (a_{e}\gamma +(d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}})(a_{e}+\gamma )\Big )(a_{l}+pZ^{*})\\&+\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \Big (a_{e}\gamma +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )+ (a_{l}+pZ^{*})\big (a_{e}+\gamma +d_{e}\\&+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )\Big )+ \frac{k_{l}(1-\epsilon )\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big ], \end{aligned}$$
$$\begin{aligned}&B_{5}=qZ^{*}pI_{l}^{*}\Big [a_{e}\gamma \Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big ) +\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\\&\quad \Big (a_{e}\gamma +(a_{e}+\gamma )\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )\Big )\Big ]\\&\quad +qI_{l}^{*}\Big [(a_{l}+pZ^{*})\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +a_{e}\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big (\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}a_{l}+pZ^{*}\big )\\&\quad \frac{k_{e}(1-\epsilon )\beta _{e}T_{2}^{*}}{(1+\alpha V^{*})^{2}}+\big (a_{e}+d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) \\&\quad \frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big )\Big ]-qZ^{*}pI_{l}^{*}\Big [\Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}+ d_{l}\\&\quad + \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) k_{e}(1-\epsilon )\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad + \frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big ]-qI_{l}^{*}\Big [(a_{l}+pZ^{*})\\&\quad \Big (\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) a_{e}\gamma +\frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big ) \\&\quad +\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )\Big ((d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}) a_{e}\gamma \\&\quad +(a_{l}+pZ^{*})\big (a_{e}\gamma +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )(a_{e}+\gamma )\big ) \\&\quad +\frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big ) + \frac{k_{l}(1-\epsilon )\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\\&\quad \Big (a_{e}+d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\Big ],\\&B_{6}=qZ^{*}pI_{l}^{*}\Big [\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \Big ( \big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )a_{e}\gamma \\&\quad + \frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big )\Big ]+qI_{l}^{*}\Big [\Big (\frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\\&\quad +d_{l} \Big ) \Big ((a_{l}+pZ^{*})\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) \frac{k_{e}(1-\epsilon )\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}\\&\quad +\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big )a_{e} \frac{k_{l}(1-\epsilon )\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}}\Big )\Big ]\\&\quad -q^{*}ZpI_{l}^{*}\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big ) \Big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )\\&\quad \frac{k_{e}(1-\epsilon )\beta _{e}I_{e}^{*}}{(1+\alpha V^{*})^{2}}-qI_{l}^{*}\Big [\frac{a_{e}k_{l}(1-\epsilon )\beta _{l}^{2}T_{l}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big (d_{e} \\&+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\Big )+\Big (d_{l}+ \frac{\beta _{l}V^{*}}{1+\alpha V^{*}}\Big )(a_{l}+pZ^{*})\\&\quad \Big (\big (d_{e}+\frac{\beta _{e}V^{*}}{1+\alpha V^{*}}\big ) a_{e}\gamma +\frac{k_{e}(1-\epsilon )\beta _{e}^{2}T_{e}^{*}V^{*}}{(1+\alpha V^{*})^{3}}\Big )\Big ]. \end{aligned}$$

Appendix C: The details in Sect. 5.1

$$\begin{aligned} C_{1}=&B_{2}-A_{1}B_{1};C_{2}=A_{1}B_{3}+B_{1}A_{3}-B_{2}A_{2}-B_{4};\\ C_{3}=&A_{2}B_{4}+B_{2}A_{4}+B_{4}-A_{1}B_{5}\\&-A_{3}B_{3}-A_{5}B_{1}; C_{4}=A_{3}B_{5}+A_{5}B_{3}-A_{2}B_{6}-A_{6}B_{2}-A_{4}B_{4};\\ C_{5}=&A_{4}B_{6}+A_{6}B_{4} -A_{5}B_{5}; C_{6}=A_{6}B_{6}.\\ D_{1}=&B_{1}; D_{2}=B_{2}A_{1}-A_{2}B_{1}-B_{3};\\ D_{3}=&A_{4}B_{1}+A_{2}B_{3}+B_{5}-A_{2}B_{3}-A_{1}B_{4};\\ D_{4}=&A_{5}B_{2} +A_{1}B_{6}+A_{3}B_{4}-A_{6}B_{1}-A_{4}B_{3}-A_{2}B_{5};\\ D_{5}=&A_{6}B_{3}+A_{4}B_{5}-A_{3}B_{6}-A_{5}B_{4};\\ D_{5}=&A_{5}B_{6}-A_{6}B_{5}.\\ S_{1}=&B_{1}^{2};S_{2}=B_{2}^{2}-2B_{1}B_{3};S_{3}=B_{3}^{2}+2B_{1}B_{5}-2B_{2}B_{4};\\ S_{4}=&B_{4}^{2}+2B_{2}B_{6}-2B_{3}B_{5};\\ S_{5}=&B_{5}^{2}-2B_{4}B_{6};S_{6}=B_{6}^{2}.\\ h_{1}=&A_{1}^{2}-2A_{2}-B_{1}^{2}; h_{2}=A_{2}^{2}+2A_{4}-2A_{1}A_{3}+2B_{1}B_{3}-B_{2}^{2};\\ h_{3}=&2A_{1}A_{5}+A_{3}^{2}-2A_{6}\\&-2A_{2}A_{4}-2B_{1}B_{5}-B_{3}^{2}+2B_{2}B_{4}; \\ h_{4}=&A_{4}^{2}+2A_{2}A_{6}-2A_{3}A_{5}-B_{4}^{2}-2B_{2}B_{6}+2B_{3}B_{5}; \\ h_{5}=&A_{1}^{2}-2A_{4}A_{6}-B_{5}^{2}+2B_{4}B_{6}; h_{6}=A_{6}^{2}-B_{6}^{2}. \end{aligned}$$

Appendix D: The details in Sect. 6

We have obtained that the model (6) experiences Hopf bifurcation at the equilibrium \(E^{*}\) for \(\tau =\tau _{0}\), and \(\pm i\omega _{0}\) is the pure imaginary root corresponding to the characteristic equation at \(E^{*}\).

Let \(\widetilde{T_{l}}(t)=T_{l}(t)-T_{l}^{*}\), \(\widetilde{I_{l}}(t)=I_{l}(t)-I_{l}^{*}\), \(\widetilde{T_{e}}(t)=T_{e}(t)-T_{e}^{*}\), \(\widetilde{I_{e}}(t)=I_{e}(t)-I_{e}^{*}\), \(\widetilde{V}(t)=V(t)-V^{*}\), \(\widetilde{Z}(t)=Z(t)-Z^{*}\), and replace \(\widetilde{T_{l}}\), \(\widetilde{I_{l}}\), \(\widetilde{T_{e}}\), \(\widetilde{I_{e}}\), \(\widetilde{V}\), \(\widetilde{Z}\), with \(T_{l}\), \(I_{l}\), \(T_{e}\), \(I_{e}\), V, Z.

Then we define \(\tau =\tau _{0}+\mu \), \(t=s\tau \), \(T_{l}(s\tau )=\overline{T_{l}}(s)\), \(I_{l}(s\tau )=\overline{I_{l}}(s)\), \(T_{e}(s\tau )=\overline{T_{e}}(s)\), \(I_{e}(s\tau )=\overline{I_{e}}(s)\), \(V(s\tau )=\overline{V}(s)\), \(Z(s\tau )=\overline{Z}(s)\), and still denote \(\overline{T_{l}}\), \(\overline{I_{l}}\), \(\overline{T_{e}}\), \(\overline{I_{e}}\), \(\overline{V}\), \(\overline{Z}\) as \(T_{l}\), \(I_{l}\), \(T_{e}\), \(I_{e}\), V, Z. The linear term at the right of the transformed model is sorted out through calculation is (D1),

$$\begin{aligned} \left\{ \begin{aligned} \dot{T_{l}}(t)&=(\tau _{0}+\mu )[-d_{l}T_{l}(t)-Q_{1}T_{l}(t)-Q_{2}V(t)],\\ \dot{I_{l}}(t)&=(\tau _{0}+\mu )[ Q_{1}T_{l}(t)-Q_{2}V(t) -a_{l}I_{l}(t) -pI_{l}(t)Z^{*}-pZ(t)I_{l}^{*}],\\ \dot{T_{e}}(t)&=(\tau _{0}+\mu )[-Q_{3}T_{e}(t)-Q_{4}V(t)-d_{e}T_{e}(t)],\\ \dot{I_{e}}(t)&=(\tau _{0}+\mu )[-Q_{3}T_{e}(t)+Q_{4}V(t)- a_{e}I_{e}(t)],\\ \dot{V}(t)&=(\tau _{0}+\mu )[k_{l}(1-\epsilon )I_{l}(t)+k_{e}(1-\epsilon )I_{e}(t)-\gamma V(t)],\\ \dot{Z}(t)&=(\tau _{0}+\mu )[qZ^{*}I_{l}(t-1)+qI_{l}^{*}Z(t-1)-rZ(t)], \end{aligned} \right. \end{aligned}$$
(D1)

where

$$\begin{aligned} Q_{1}&=\frac{\beta _{l}V^{*}}{1+\alpha V^{*}},\\ Q_{2}&=\frac{\beta _{l}T_{l}^{*}}{(1+\alpha V^{*})^{2}},\\ Q_{3}&=\frac{\beta _{e}V^{*}}{1+\alpha V^{*}},\\ Q_{4}&=\frac{\beta _{e}T_{e}^{*}}{(1+\alpha V^{*})^{2}}. \end{aligned}$$

And the nonlinear term at the right of the transformed model is (D2),

$$\begin{aligned} f(\mu , \mu _{t})=(\tau _{0}+\mu ) \left[ \begin{aligned}&K_{1}T_{l_{t}}(0)V_{_{t}}(0)+K_{2}V_{_{t}}(0)V_{_{t}}(0)+\cdots \\&K_{1}T_{l_{t}}(0)V_{_{t}}(0)+K_{2}V_{_{t}}(0)V_{_{t}}(0)-pI_{l_{t}}(0)Z_{_{t}}(0)+\cdots \\&P_{1}T_{e_{t}}(0)V_{_{t}}(0)+P_{2}V_{_{t}}(0)V_{_{t}}(0)+\cdots \\&P_{1}T_{e_{t}}(0)V_{_{t}}(0)+P_{2}V_{_{t}}(0)V_{_{t}}(0)+\cdots \\&0\\&qI_{l_{t}}(-1)V_{_{t}}(-1) \end{aligned} \right] , \end{aligned}$$
(D2)

where

$$\begin{aligned} K_{1}=\frac{\beta _{l}}{(1+\alpha V^{*})^{2}}, K_{2}=\frac{\beta _{l}T_{l}^{*}\alpha }{2(1+\alpha V^{*})^{2}}, P_{1}=\frac{\beta _{e}}{(1+\alpha V^{*})^{2}}, P_{2}=\frac{\beta _{e}T_{e}^{*}\alpha }{2(1+\alpha V^{*})^{2}}, \end{aligned}$$

and

$$\begin{aligned} \mu _{t}(\theta )= \left[ \begin{array}{cccccc} &{}T_{l_{t}}(\theta )\\ &{}I_{l_{t}}(\theta )\\ &{}T_{e_{t}}(\theta )\\ &{}I_{e_{t}}(\theta )\\ &{}V_{_{t}}(\theta )\\ &{}Z_{_{t}}(\theta ) \end{array} \right] = \left[ \begin{array}{cccccc} T_{l_{t}}(t+\theta )\\ I_{l_{t}}(t+\theta )\\ T_{e_{t}}(t+\theta )\\ I_{e_{t}}(t+\theta )\\ V_{_{t}}(t+\theta )\\ Z_{_{t}}(t+\theta ) \end{array} \right] , \theta \in [-1, 0]. \end{aligned}$$

Then the model (6) could be written as a functional differential equation in \(C =C([-1, 0],\ R_{+}^{6})\).

For \(\phi (\theta )=(\phi _{1}(\theta ), \phi _{2}(\theta ), \phi _{3}(\theta ), \phi _{4}(\theta ), \phi _{5}(\theta ), \phi _{6}(\theta ))^{T}\in C\), define operator \(L_{\mu }\phi =(\tau _{0}+\mu )\mathbb {M}_{1}\phi (0)+(\tau _{0}+\mu )\mathbb {M}_{2}\phi (-1)\), where

$$\begin{aligned} \mathbb {M}_{1}= & {} \left( \begin{array}{cccccc} -d_{l}-Q_{1} &{} 0 &{} 0 &{} 0 &{} -Q_{2} &{}0 \\ Q_{1} &{} -a_{l}-pZ^{*} &{} 0 &{} 0 &{} Q_{2} &{} -pI_{l}^{*}\\ 0 &{} 0 &{} -Q_{3}-d_{e} &{} 0 &{} -Q_{4} &{} 0\\ 0 &{} 0 &{} Q_{3} &{}-a_{e} &{} Q_{4} &{} 0\\ 0 &{}k_{l}(1-\epsilon ) &{} 0 &{}k_{e}(1-\epsilon ) &{}-\gamma &{} 0\\ 0 &{}0 &{} 0 &{}0 &{} 0 &{}-r\\ \end{array}\right) ,\\ \mathbb {M}_{2}= & {} \left( \begin{array}{cccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{}0 &{} 0 &{} 0\\ 0 &{}0 &{} 0 &{}0 &{}0 &{} 0\\ 0 &{}qZ^{*} &{} 0 &{}0 &{} 0 &{}qI_{l}^{*} \end{array} \right) . \end{aligned}$$

According to the Riesz representation theorem, there is a matrix value function \(\eta (\theta , \mu ):[-1, 0]\rightarrow R^{6}\), such that

$$\begin{aligned} \eta (\theta )\in C([-1, 0],\ R_{+}^{6}), \end{aligned}$$

then we have

$$\begin{aligned} \begin{aligned} L_{\mu }\phi =\int ^{0}_{-1}d\eta (\theta , \mu )\phi (\theta ). \end{aligned} \end{aligned}$$
(D3)

For \(\phi \in C([-1, 0],\ R_{+}^{6})\), we define

$$\begin{aligned} A(\mu )\phi = \left\{ \begin{aligned}&\frac{d\phi }{d\theta },~\theta \in [-1,0), \\&\int ^{0}_{-1}d\eta (\mu , s)\phi (s),~\theta =0, \end{aligned} \right. \end{aligned}$$
(D4)

and

$$\begin{aligned} R(\mu )(\phi )= \left\{ \begin{aligned}&0,~\theta \in [-1,0), \\&f(\mu , \phi ),~\theta =0. \end{aligned} \right. \end{aligned}$$
(D5)

Therefore, model (6) is equivalent to abstract differential equation (D6)

$$\begin{aligned} \begin{aligned} \dot{\mu _{t}}=A(\mu )\mu _{t}+R(\mu )\mu _{t}. \end{aligned} \end{aligned}$$
(D6)

Next, we can discuss the Eq. (D6).

For \(\varphi \in C^{1}([0,1], (R^{6})^{*})\), we can define the adjoint operator,

$$\begin{aligned} A^{*}\varphi (s)= \left\{ \begin{aligned}&-\frac{d\varphi }{ds},~s\in (0,1], \\&\int ^{0}_{-1}d\eta ^{T}(t, 0)\phi (-t),~s=0, \end{aligned} \right. \end{aligned}$$
(D7)

and define the bilinear inner product as (D8)

$$\begin{aligned} \begin{aligned} \langle \varphi (s),\phi (s)\rangle =\bar{\varphi }(0)\phi (0)-\int ^{0}_{-1}\int ^{\theta }_{\xi =0} \bar{\varphi }(\xi -\theta )d\eta (\theta )\phi (\xi )d\xi , \end{aligned} \end{aligned}$$
(D8)

where \(\eta (\theta )=\eta (\theta ,0)\), and the conjugate operator of \(A(\mu )\) is \(A^{*}\). Based on the above discussion, \(\pm i\omega _{0}\tau _{0}\) is the eigenvalue of A(0) and \(A^{*}\). Then we will calculate the eigenvectors of A and \(A^{*}\) about \(i\omega _{0}\tau _{0}\) and \(-i\omega _{0}\tau _{0}\).

Suppose that \(q(\theta )\) and \(q^{*}(s)\) are the eigenvectors of \(A(\mu _{0})\) and \(A^{*}\) corresponding to \(i\omega _{0}\tau _{0}\) and \(-i\omega _{0}\tau _{0}\) respectively, and \(\langle q^{*}(s), q(\theta )\rangle =1\).

When \(\theta \ne 0\), according to the definition of A(0), easily that \(q(\theta )=q(0)e^{i\tau _{0}\omega _{0}\theta }\) and q(0) satisfies the following equation,

$$\begin{aligned} (\int ^{0}_{-1}d\eta (0,s)e^{i\tau _{0}\omega _{0}\theta }-i\tau _{0}\omega _{0}I)q(0)=0, \end{aligned}$$

where I is the identity matrix, and \(q(0)=(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6})^{T}\), calculation shows that

$$\begin{aligned} \left\{ \begin{aligned}&q_{1}=1, q_{2}=\frac{\tau _{0}k_{e}(1-\epsilon )q_{4}-(\tau _{0}\gamma +i\tau _{0} \omega _{0})q_{5}}{\tau _{0}k_{l}(1-\epsilon )}, q_{3}=-\frac{\tau _{0}Q_{4}q_{5}}{\tau _{0}M_{2}+i\tau _{0} \omega _{0}}, \\&q_{4}=\frac{\tau _{0}Q_{3}q_{3}+\tau _{0}Q_{4}q_{5}}{\tau _{0}a_{e}+i\tau _{0} \omega _{0}}, q_{5}=-\frac{\tau _{0}M_{1}+i\tau _{0}\omega _{0}}{ \tau _{0} Q_{2}}, q_{6}=\frac{qZ^{*} \tau _{0} e^{i\tau _{0}\omega _{0}}q_{2}}{\tau _{0}r+i\tau _{0} \omega _{0}-qI_{l}^{*} \tau _{0} e^{i\tau _{0}\omega _{0}}}, \end{aligned} \right. \end{aligned}$$

where \(M_{1}=Q_{1}+d_{l}\), \(M_{2}=Q_{3}+d_{e}\). Similarly, \(q^{*}\) satisfies the following equation

$$\begin{aligned} (i\tau _{0}\omega _{0}I + \int ^{0}_{-1}d\eta ^{T}(0,s)e^{-i\tau _{0}\omega _{0}\theta })q^{*}=0, \end{aligned}$$

we can further get

$$\begin{aligned} \left\{ \begin{aligned}&q_{1}^{*}=1, q_{2}^{*}=\frac{\tau _{0}M_{1}-i\tau _{0}\omega _{0}}{Q_{1}}, q_{3}^{*}=-\frac{ Q_{4}q_{5}^{*}}{\tau _{0}M_{2}-i\tau _{0}\omega _{0}}, q_{4}^{*}=\frac{k_{e}(1-\epsilon )q_{5}^{*}}{\tau _{0}a_{e}-i\tau _{0} \omega _{0}},\\&q_{5}^{*}=\frac{[-\tau _{0}(a_{l}+pZ^{*})+i\tau _{0}\omega _{0}]q_{2}^{*}+qZ^{*}e^{i\tau _{0}\omega _{0}} q_{6}^{*}}{ k_{l}(1-\epsilon )}, q_{6}^{*}=\frac{pI_{l}^{*}(\tau _{0}M_{1}-i\tau _{0} \omega _{0})}{Q_{1}(qI_{l}^{*}e^{i\tau _{0}\omega _{0}}+i\omega _{0}) }. \end{aligned} \right. \end{aligned}$$

Let \(q^{*}(s)=Dq^{*}e^{i\tau _{0}\omega _{0}s}\), we demand to use \(\langle q^{*}(s), q(\theta )\rangle =1\) to determine the formula of D,

$$\begin{aligned} \langle q^{*}(s), q(\theta )\rangle =\overline{D}[\overline{q^{*}}^{T}q(0)-\overline{q^{*}}^{T}\tau _{0}\mathbb {M}_{2} e^{i\tau _{0}\omega _{0}}q(0)]. \end{aligned}$$

Thus, we can choose D as

$$\begin{aligned} D=\frac{1}{(1+q_{2}^{*}\overline{q}_{2}+q_{3}^{*}\overline{q}_{3}+q_{4}^{*}\overline{q}_{4}+q_{5}^{*}\overline{q}_{5} +q_{6}^{*}\overline{q}_{6})+qq_{6}^{*}\tau _{0}e^{i\tau _{0}\omega _{0}}(Z^{*}\overline{q}_{2}+I_{l}^{*}\overline{q}_{6})}, \end{aligned}$$

at the same time, we can easily obtain \(\langle q^{*}(s),\overline{q}(\theta )\rangle =0\).

According to the algorithm in [52] and the similar discussion in [45], we can calculate the corresponding coefficients,

$$\begin{aligned} \begin{aligned} g_{20}=&2\overline{D}\tau _{0}\big \{(\overline{q^{*}_{1}}+\overline{q^{*}_{2}})(K_{1}q_{1}q_{5}+ K_{2}q^{*}_{5})+(\overline{q^{*}_{3}}+\overline{q^{*}_{4}})(P_{1}q_{3}q_{5}+P_{2}q_{5}^{2})\\ {}&-q_{2}q_{6}(\overline{q^{*}_{2}}p +\overline{q^{*}_{6}}qe^{-2i\tau _{0}\omega _{0}}) \big \},\\ g_{02}=&2\overline{D}\tau _{0}\big \{(\overline{q^{*}_{1}}+\overline{q^{*}_{2}})(K_{1}\overline{q}_{1} \overline{q}_{5}+ K_{2}\overline{q}_{5}^{2})+(\overline{q^{*}_{3}}+\overline{q^{*}_{4}})(P_{1} \overline{q}_{3}\overline{q}_{5}+\overline{q}_{3}\overline{q}_{5})\\&+\overline{q^{*}_{6}}q\overline{q}_{2}\overline{q}_{6} e^{2i\tau _{0}\omega _{0}}\big \},\\ g_{11}=&\overline{D}\tau _{0}\big \{(\overline{q^{*}_{1}}+\overline{q^{*}_{2}})[K_{1}(q_{1}\overline{q}_{5} +q_{5}\overline{q}_{1})+2K_{2}q_{5}\overline{q}_{5}]+(\overline{q^{*}_{3}}+\overline{q^{*}_{4}})[ 2P_{2}\overline{q}_{5}\overline{q^{*}_{5}}\\&+P_{1} (q_{3}\overline{q}_{5}+q_{5}\overline{q}_{3})]-(p\overline{q^{*}_{2}}-q\overline{q^{*}_{6}}) (q_{2}\overline{q}_{6}+ q_{6}\overline{q}_{2})\big \},\\ g_{21}=&\overline{D}\tau _{0}\big \{(\overline{q^{*}_{1}}+\overline{q^{*}_{2}})[2K_{1}(q_{5} W^{(1)}_{11}(0)+q_{1}W^{(5)}_{11}(0))+4K_{2}q_{5}W^{(5)}_{11}(0)\\&+K_{1}(W^{(1)}_{20}(0)\overline{q}_{5} +\overline{q}_{1}W^{(5)}_{20}(0))+2K_{2}\overline{q}_{5}W^{(5)}_{20}(0)]+ (\overline{q^{*}_{3}}+\overline{q^{*}_{4}})\\&[2P_{1}(W^{(3)}_{20}(0)q_{5}+ W^{(5)}_{11}(0)q_{3})+4P_{2}q_{5}W^{(5)}_{11}(0)+P_{1}(W^{(3)}_{20}(0)\overline{q}_{5} \\ {}&+\overline{q}_{3}W^{(5)}_{20}(0))+2P_{2}\overline{q}_{5}W^{(5)}_{20}(0)]+2\overline{q^{*}_{6}}q e^{-i\tau _{0}\omega _{0}}(q_{2}W^{(6)}_{11}(-1)\\&+q_{6}W^{(2)}_{11}(-1))+ \overline{q^{*}_{6}}q e^{ i\tau _{0}\omega _{0}}(\overline{q}_{2} W^{(6)}_{20}(-1)+\overline{q}_{6} W^{(2)}_{20}(-1))\big \}. \end{aligned} \end{aligned}$$

Further, we solve the expressions of \(W_{20}(\theta )\) and \(W_{11}(\theta )\),

$$\begin{aligned} \begin{aligned} W_{20}(\theta )&=\frac{ig_{20}}{\tau _{0}\omega _{0}}q(0)e^{i\tau _{0}\omega _{0}\theta }+\frac{i \overline{g}_{02}}{3\tau _{0}\omega _{0}}\\&\quad \overline{q}(0)e^{-i\tau _{0}\omega _{0}\theta }+ E_{1}e^{2i\tau _{0}\omega _{0}\theta },\\ W_{11}(\theta )&=\frac{ig_{11}}{\tau _{0}\omega _{0}}q(0)e^{i\tau _{0}\omega _{0}\theta }\\&\quad +\frac{i \overline{g}_{11}}{\tau _{0}\omega _{0}}\overline{q}(0)e^{-i\tau _{0}\omega _{0}\theta }+E_{2}, \end{aligned} \end{aligned}$$

and \(E_{1}\) \(E_{2}\) can be calculated as follows,

$$\begin{aligned} \begin{aligned} E_{1}&=\Big [2i\tau _{0}\omega _{0}I-\int ^{0}_{-1}d_{\theta }\eta (\mu _{0}, \theta )\Big ]^{-1}H_{20}(0), \\ E_{2}&=-\Big [\int ^{0}_{-1}d_{\theta }\eta (\mu _{0}, \theta )\Big ]^{-1}H_{11}(0), \end{aligned} \end{aligned}$$

where \(H_{20}(0)=g_{20}(\overline{q^{*}}(0))^{-1}\), \(H_{11}(0)=g_{11}(\overline{q^{*}}(0))^{-1}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Zhang, Y., Sang, Y. et al. Stability and Hopf bifurcation on an immunity delayed HBV/HCV model with intra- and extra-hepatic coinfection and saturation incidence. Nonlinear Dyn 111, 14485–14511 (2023). https://doi.org/10.1007/s11071-023-08580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08580-x

Keywords

Navigation