Skip to main content
Log in

The importance of immune responses in a model of hepatitis B virus

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamical behavior of a hepatitis B virus model with CTL immune responses is studied. Analyzing the model, we show that the virus-free equilibrium is globally asymptotically stable if the basic reproductive ratio of virus is less than one and the endemic equilibrium is locally asymptotically stable if the basic reproductive ratio is greater than one. When the basic reproductive ratio is greater than one, the system is uniformly persistent, which means the virus is endemic. Mathematical analysis and numerical simulations show that the CTL immune responses play a significant and decisive role in eradication of disease. The study and information derived from this model may have an important impact on treatment protocols of hepatitis B virus in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization: Hepatitis B. WHO/CDS/CSR/LYO/2002.2: Hepatitis B. This document has been downloaded from the WHO/CSR Web site. http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/ (2002)

  2. Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 93, 4398–4402 (1996)

    Article  Google Scholar 

  3. Tsiang, M., Rooney, J.E., Toole, J.J., Gibbset, C.S.: Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 29, 1863–1869 (1999)

    Article  Google Scholar 

  4. Neumann, A.U., Lam, N.P.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-Alpha therapy. Science 282, 103–107 (1998)

    Article  Google Scholar 

  5. Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic model of virus infection with application. Rocky Mt. J. Math. 38, 1573–1585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Long, C., Qi, H., Huang, S.H.: Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection. J. Biomed. Biotechnol. 38, 1573–1585 (2008)

    Google Scholar 

  7. Qesmi, R., Wu, J., Wu, J., Heffernan, J.M.: Influence of backward bifurcation in a model of hepatitis B and C viruses. Math. Biosci. 224, 118–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, K., Wang, W.: Propagation of HBV with spatial dependence. Math. Biosci. 210, 78–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, K., Wang, W., Song, S.: Dynamics of an HBV model with diffusion and delay. J. Theor. Biol. 253, 36–44 (2008)

    Article  Google Scholar 

  10. Zeuzem, S., Schmidt, J.M., Lee, J.H., et al.: Effect of inferferomalt on the dynamics of hepatitis C virus turnover in vivo. J. Hepatol. 23, 366–371 (1996)

    Google Scholar 

  11. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  12. Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus. J. Virol. 74, 10304–10311 (2000)

    Article  Google Scholar 

  13. Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002)

    Article  Google Scholar 

  14. Wang, K., Wang, W., Liu, X.: Global stability in a viral infection model with lytic and nonlytic immune responses. Comput. Math. Appl. 51, 1593–1610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Z., Liu, X.: A chronic viral infection model with immune impairment. J. Theor. Biol. 249, 532–542 (2007)

    Article  Google Scholar 

  16. Mann, J., Roberts, M.: Modelling the epidemiology of hepatitis B in New Zealand. J. Theor. Biol. 269, 266–272 (2011)

    Article  Google Scholar 

  17. Bocharov, G., Ludewig, B., Bertoletti, A., Klenerman, P., Junt, T., Krebs, P., Luzyanina, T., Fraser, C., Anderson, R.M.: Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocytes responses. J. Virol. 78(5), 2247–2254 (2004)

    Article  Google Scholar 

  18. Chisari, F.V.: Cytotoxic T cells and viral hepatitis. J. Clin. Invest. 99, 1472–1477 (1997)

    Article  Google Scholar 

  19. Guidotti, L.G., Chisari, F.V.: To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 8, 478–483 (1996)

    Article  Google Scholar 

  20. Liu, W.-m.: Nonlinear oscillations in models of immune responses to persistent viruses. Theor. Popul. Biol. 52, 224–230 (1997)

    Article  MATH  Google Scholar 

  21. Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6, 583–600 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wikipedia. Elasticity coefficient. http://en.wikipedia.org/wiki/Elasticity_Coefficient (2010)

  24. Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974)

    Article  Google Scholar 

  25. Woods, J.H., Sauro, H.M.: Elasticities in metabolic control analysis: algebraic derivation of simplified expressions. Comput. Appl. Biosci. 13, 123–130 (1997)

    Google Scholar 

  26. McMahon, B.J., Alward, W.L., Hall, D.B., Heyward, W.L., Bender, T.R., Francis, D.P., Maynard, J.E.: Acute hepatitis B virus infection: relation of age to clinical expression of disease and subsequent development of the carrier state. J. Infect. Dis. 151, 599–603 (1985)

    Article  Google Scholar 

  27. Zhao, S., Xu, Z., Lu, Y.: A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int. J. Epidemiol. 29, 744–752 (2000)

    Article  Google Scholar 

  28. Medley, G.F., Lindop, N.A., Edmunds, W.J., Nokes, D.J.: Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nat. Med. 7(5), 619–624 (2001)

    Article  Google Scholar 

  29. Shepard, C.W., Simard, E.P., Finelli, L., Fiore, A.E., Bell, B.P.: Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev. 28, 112–125 (2006)

    Article  Google Scholar 

  30. Nowak, M.A., May, R.M.: Viral Dynamics. Oxford University Press, Oxford (2000)

    Google Scholar 

  31. Pereson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002)

    Article  Google Scholar 

  32. Tian, X., Xu, R.: Asymptotic properties of a hepatitis B virus infection model with time delay. Discrete Dyn. Nat. Soc. 182340, 21 (2010). doi:1155/2010/182340

    MathSciNet  Google Scholar 

  33. Shi, X., Zhou, X., Song, X.: Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear Anal. 11, 1795–1809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, K., Fan, A., Torres, A.: Global properties of an improved hepatitis B virus model. Nonlinear Anal. 11, 3131–3138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X., Tao, Y., Song, X.: A delayed HIV-1 infection model with Beddington–DeAngelis functional response. Nonlinear Dyn. 62, 67–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-an Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, J., Cui, Ja. & Hui, J. The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn 67, 723–734 (2012). https://doi.org/10.1007/s11071-011-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0022-6

Keywords

Navigation