Skip to main content
Log in

Exact similariton solution families and diverse composite waves in coherently coupled inhomogeneous systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Seeking analytical solutions of nonlinear Schrödinger (NLS)-like equations remains an open topic. In this paper, we revisit the general inhomogeneous nonautonomous NLS (inNLS) equation and report on exact similaritons under generic constraint relationships by proposing a novel generic self-similar transformation, which implies that there exist a rich variety of highly controllable solution families for inhomogeneous systems. As typical examples, richly controllable behaviors of the self-similar soliton (SS), self-similar Akhmediev breather (SAB), self-similar Ma breather (SMB), and self-similar rogue wave (SRW) are presented in a periodic distribution nonlinear system. With the aid of a linear transformation, these novel similariton solutions are deployed as a basis for constructing two-component composite solutions to a pair of coherently coupled inNLS equations including four-wave mixing. The diverse composite waves that emerge, including SS–SS, SAB–SMB, and SRW–SRW families, are investigated in some detail. The family of similariton solutions presented here may prove significance for designing the control and transmission of nonlinear waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Ponomarenko, S.A., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Google Scholar 

  2. Li, L., Zhao, X.S., Xu, Z.Y.: Dark solitons on an intense parabolic background in nonlinear waveguides. Phys. Rev. A 78, 063833 (2008)

    Google Scholar 

  3. Luo, H.G., Zhao, D., He, X.G.: Exactly controllable transmission of nonautonomous optical solitons. Phys. Rev. A 79, 063802 (2009)

    Google Scholar 

  4. Viscondi, T.F., Furuya, K.: Dynamics of a Bose-Einstein condensate in a symmetric triple-well trap. J. Phys. A: Math. Theor. 44, 175301 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)

    Google Scholar 

  6. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Google Scholar 

  7. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 133, 109580 (2020)

    MATH  Google Scholar 

  8. Wang, M., Tian, B.: In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system. Eur. Phys. J. Plus. 136, 1002 (2021)

    Google Scholar 

  9. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 107, 2657–2666 (2022)

    Google Scholar 

  10. Yang, R.C., Gao, J., Jia, H.P., Tian, J.P., Christian, J.M.: Ultrashort nonautonomous similariton solutions and the cascade tunneling of interacting similaritons. Opt. Commun. 459, 125025 (2020)

    Google Scholar 

  11. Wu, X.F., Hua, G.S., Ma, Z.Y.: Novel rogue waves in an inhomogenous nonlinear medium with external potentials. Commun. Nonlinear Sci. Numer. Simul. 18, 3325–3336 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Perego, A.M.: Exact superregular breather solutions to the generalized nonlinear Schrödinger equation with nonhomogeneous coefficients and dissipative effects. Opt. Lett. 45(14), 3913 (2020)

    Google Scholar 

  13. Triki, H., Choudhuri, A., Zhou, Q., Biswas, A., Alshomrani, A.S.: Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction. Appl. Math. Comput. 371, 124951 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Djoptoussia, C., Tiofack, C.G.L., AlimMohamadou, A., Kofané, T.C.: Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients. Nonlinear Dyn. 107, 3833–3846 (2022)

    Google Scholar 

  15. Liu, C.P., Fj, Yu., Li, L.: Non-autonomous wave solutions for the Gross-Pitaevskii (GP) equation with a parabola external potential in Bose-Einstein condensates. Phys. Lett. A 383, 125981 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Manikandan, K., Muruganandam, P., Senthilvelan, M., Lakshmanan, M.: Manipulating localized matter waves in multicomponent Bose-Einstein condensates. Phys. Rev. E 93, 032212 (2016)

    MathSciNet  Google Scholar 

  17. Mareeswaran, R.B., Kanna, T.: Superposed nonlinear waves in coherently coupled Bose-Einstein condensates. Phys. Lett. A 380, 3244–3252 (2016)

    MathSciNet  Google Scholar 

  18. Jia, H.P., Li, B., Yang, R.C., Tian, J.P.: Diverse composite waves in coherently coupled inhomogeneous fiber systems with external potentials. Nonlinear Dyn. 99(4), 2987–2999 (2020)

    Google Scholar 

  19. Xue, R.R., Yang, R.C., Jia, H.P., Wang, Y.: Novel bright and kink similariton solutions of cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Phys. Scr. 96, 125230 (2021)

    Google Scholar 

  20. He, X.G., Zhao, D., Li, L., Luo, H.G.: Engineering integrable nonautonomous nonlinear Schrödinger equations. Phys. Rev. E 79, 056610 (2009)

    Google Scholar 

  21. Nandy, S., Barthakur, A.: Dark-bright soliton interactions in coupled nonautonomous nonlinear Schrödinger equation with complex potentials. Chaos Soliton. Fract. 143, 110560 (2021)

    MATH  Google Scholar 

  22. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  23. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106(20), 204502 (2011)

    Google Scholar 

  24. Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2(1), 011015 (2012)

    Google Scholar 

  25. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Google Scholar 

  26. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)

    MATH  Google Scholar 

  27. Kengne, E., Lakhssassi, A., Liu, W.M.: Non-autonomous solitons in inhomogeneous nonlinear media with distributed dispersion. Nonlinear Dyn. 97, 449–469 (2019)

    MATH  Google Scholar 

  28. Loomba, S., Kaur, H.: Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation. Phys. Rev. E 88, 062903 (2013)

    Google Scholar 

  29. Kundu, A.: Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation. Phys. Rev. E 79, 015601 (2009)

    MathSciNet  Google Scholar 

  30. Zhao, D., He, X.G., Luo, H.G.: From canonical to nonautonomous solitons. Eur. Phys. J. D 53, 213–216 (2009)

    Google Scholar 

  31. Triki, H., Zhou, Q., Biswas, A., Xu, S.L., Alzahrani, A.K., Belic, M.R.: Self-frequency shift effect for chirped self-similar solitons in a tapered graded-indexed waveguide. Opt. Commun. 468, 125800 (2020)

    Google Scholar 

  32. Dai, C.Q., Wang, Y.Y., Tian, Q., Zhang, J.F.: The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation. Ann. Phys. 327, 512–521 (2012)

    MATH  Google Scholar 

  33. Kumar, C.N., Gupta, R., Goyal, A., Loomba, S., Raju, T.S., Panigrahi, P.K.: Controlled giant rogue waves in nonlinear fiber optics. Phys. Rev. A 86, 025802 (2012)

    Google Scholar 

  34. Ponomarenko, S.A., Agrawal, G.P.: Optical similaritons in nonlinear waveguides. Opt. Lett. 32, 1659 (2007)

    Google Scholar 

  35. Kengne, E., Liu, W.M.: Management of matter-wave solitons in Bose-Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential. Phys. Rev. E 98, 012204 (2018)

    Google Scholar 

  36. Zhang, J.F., Hu, W.C.: Controlling the propagation of optical rogue waves in nonlinear graded-index waveguide amplifiers. Chin. Opt. Lett. 11(3), 031901 (2013)

    Google Scholar 

  37. Kruglov, V.I., Triki, H.: Quartic and dipole solitons in a highly dispersive optical waveguide with self-steepening nonlinearity and varying parameters. Phys. Rev. A 102, 043509 (2020)

    MathSciNet  Google Scholar 

  38. Triki, H., Kruglov, V.I.: Chirped self-similar solitary waves in optical fibers governed with self-frequency shift and varying parameters. Chaos Soliton. Fract. 143, 110551 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Jia, H.P., Yang, R.C., Tian, J.P., Zhang, W.M.: Controllable excitation of higher-order rogue waves in nonautonomous systems with both varying linear and harmonic external potentials. Opt. Commun. 415, 93–100 (2018)

    Google Scholar 

  40. Mahato, D.K., Govindarajan, A., Lakshmanan, M., Sarma, A.K.: Dispersion managed generation of Peregrine solitons and Kuznetsov-Ma breather in an optical fiber. Phys. Lett. A 392, 127134 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Tiofack, C.G.L., Coulibaly, S., Taki, M., Bièvre, S.D., Dujardin, G.: Periodic modulations controlling Kuznetsov–Ma soliton formation in nonlinear Schrödinger equations. Phys. Lett. A 381, 1999–2003 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, D., Luo, H.G., Chai, H.Y.: Integrability of the Gross-Pitaevskii equation with Feshbach resonance management. Phys. Lett. A 372, 5644 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Manikandan, K., Muruganandam, P., Senthilvelan, M., Lakshmanan, M.: Manipulating matter rogue waves and breathers in Bose-Einstein condensates. Phys. Rev. E 90, 062905 (2014)

    Google Scholar 

  44. He, J., Li, Y.: Designable integrability of the variable coefficient nonlinear Schrödinger equations. Stud. Appl. Math. 126, 1–15 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Manikandan, K., Priya, N.V., Senthilvelan, M., Sankaranarayanan, R.: Higher-order matter rogue waves and their deformations in two-component Bose-Einstein condensates. Wave. Random Complex 32, 867–886 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Hao, R.R., Li, L., Li, Z.H., Zhou, G.S.: Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 70, 066603 (2004)

    Google Scholar 

  47. Yang, R.C., Li, L., Hao, R.Y., Li, Z.H., Zhou, G.S.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    MathSciNet  Google Scholar 

  48. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers. 61775126, 62071282).

Author information

Authors and Affiliations

Authors

Contributions

KH was involved in methodology, software, data analysis, writing—original draft. RY contributed to conceptualization, theoretical analysis, supervision. HJ was involved in conceptualization, validation, writing—review & editing. YH and JMC contributed to writing-review & editing.

Corresponding author

Correspondence to Rongcao Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Explicit self-similar solutions of Eq. (1)

The explicit solutions of SS, SAB, SMB and SRW for inNLS Eq. (1) can be obtained by combining Eqs. (11)–(16) and the exact solutions of the soliton [22], Akhmediev and Ma breather [23], and rogue wave (RW) [24] of Eq. (8), which are expressed as follows:

(1) Exact SS solution:

$$ u_{SS} = k_{1} \eta_{s} \frac{{r(z)^{{(1{ - 4}\alpha_{r} )/2}} }}{{d(z)^{{(1 + 4\alpha_{d} )/2}} }}{\text{sech}}[\eta_{s} (T - T_{s} + 2\delta_{s} Z)]e^{{i[(\eta_{s}^{2} - \delta_{s}^{2} )Z - \delta_{s} T + \varPhi_{s} + \varphi (z,t)] - 2\alpha_{p} \int {p(z)dz} }} , $$
(A1)

where ηs, δs, Ts and ϕs represent the amplitude, frequency, initial position and phase of the SS, respectively.

(2) Exact SAB solution

$$ \begin{gathered} u_{SAB} = k_{1} \frac{{r(z)^{{(1{ - 4}\alpha_{r} )/2}} }}{{d(z)^{{(1 + 4\alpha_{d} )/2}} }}\frac{{\cosh [a(Z - Z_{ab} ) - 2i\omega_{ab} ] - \cos (\omega_{ab} )\cos [b(T - T_{ab} )]}}{{\cosh [a(Z - Z_{ab} )] - \cos (\omega_{ab} )\cos [b(T - T_{ab} )]}} e^{{i\left[ {2(Z - Z_{ab} ) + \phi (z,t)} \right] - 2\alpha_{p} \int {p(z)dz} }} , \hfill \\ \end{gathered} $$
(A2)

where a = 2sin(2ωab), b = 2sin(ωab), ωab ∈ ℝ. The parameters Zab and Tab are, respectively, related to the initial position and time-shift of the SAB.

(3) Exact SMB solution

$$ \begin{gathered} u_{SMB} = k_{1} \frac{{r(z)^{{(1{ - 4}\alpha_{r} )/2}} }}{{d(z)^{{(1 + 4\alpha_{d} )/2}} }}\frac{{\cos [m_{a} (Z - Z_{m} ) - 2i\omega_{m} ] - \cosh (\omega_{m} )\cosh [m_{b} (T - T_{m} )]}}{{\cos [m_{a} (Z - Z_{m} )] - \cosh (\omega_{m} )\cosh [m_{b} (T - T_{m} )]}} \, e^{{i\left[ {2(Z - Z_{m} ) + \phi (z,t)} \right] - 2\alpha_{p} \int {p(z)dz} }} , \hfill \\ \end{gathered} $$
(A3)

where ma = 2sinh(2ωm), mb = 2sinh(ωm), ωm ∈ ℝ. The parameters Zm and Tm determine the initial position and time-shift of the SMB, respectively.

(4) Exact SRW solution

$$ u_{SRW} = k_{1} \frac{{r(z)^{{(1{ - 4}\alpha_{r} )/2}} }}{{d(z)^{{(1 + 4\alpha_{d} )/2}} }}\alpha_{g} \times \left[1 - \frac{{4 + i16\left| {\alpha_{g} } \right|^{2} (Z - Z_{g} )}}{{1 + 4\left| {\alpha_{g} } \right|^{2} (T - T_{g} ) + 16\left| {\alpha_{g} } \right|^{4} (Z - Z_{g} )^{2} }}\right]\times e^{{i\left[ {2\left| {\alpha_{g} } \right|^{2} (Z - Z_{g} ) + \phi (z,t)} \right] - 2\alpha_{p} \int {p(z)dz} }}, $$
(A4)

where αg is related to the background intensity of the SRW. The parameters Zg and Tg determine the initial position and time-shift of the SRW, respectively. Here, the self-similar variables ZZ(z) and TT(z, t) in (A1)–(A4) are given by Eqs. (12) and (13), respectively.

Appendix B: Some special cases of similariton (2)

(1) When αp = 0, 5αd = –3αr, r5(z) = d3(z) and Ω0 = 0, under the constraint conditions Γ(z) = 0 and Ω2(z) = [–8dz2(z) + 5d(z)dzz(z)] /[50d3(z)], the self-similar variables are reduced to those studied in Ref. [11]:

$$ A(z) = k_{1} d^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 5}} \right. \kern-0pt} 5}}} (z), $$
(B1.1)
$$ Z(z) = k_{1}^{2} \int {d^{{{1 \mathord{\left/ {\vphantom {1 5}} \right. \kern-0pt} 5}}} (z)} dz, $$
(B1.2)
$$\begin{aligned} {}&T(z,t) = k_{1} d^{{{{ - 2} \mathord{\left/ {\vphantom {{ - 2} 5}} \right. \kern-0pt} 5}}} (z)t - 2k_{1} \\& \int {d^{{{1 \mathord{\left/ {\vphantom {1 5}} \right. \kern-0pt} 5}}} (z)\left( {k_{2} + \int {d^{{{2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-0pt} 5}}} (z)\varOmega_{1} (z)dz} } \right)dz},\end {aligned} $$
(B1.3)
$$ \phi (z,t) = \frac{{d_{z} (z)}}{{10d^{2} (z)}}t^{2} + \frac{{\int {d^{{{2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-0pt} 5}}} (z)\varOmega_{1} (z)dz} }}{{d^{{{2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-0pt} 5}}} (z)}}t - \int {d^{{{1 \mathord{\left/ {\vphantom {1 5}} \right. \kern-0pt} 5}}} (z)\left( {k_{2} + \int {d^{{{2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-0pt} 5}}} (z)\varOmega_{1} (z)dz} } \right)^{2} dz}. $$
(B1.4)

(2) When αp = 0, αr = 0, αd = − 1/2 and Ω0(z) = 0, under the constraint conditions Γ(z) = –dz(z)/2d(z) and Ω2(z) = [r(z)rz(z)dz(z) + 2d(z)rz2(z) – d(z)r(z)rzz(z), the self-similar variables are reduced to the first case reported in Ref. [18]:

$$ A\left( z \right) = k_{1} \left[ {d\left( z \right)r\left( z \right)} \right]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} , $$
(B2.1)
$$ Z(z) = k_{1}^{2} \int {d(z)r^{2} (z)} dz ,$$
(B2.2)
$$ T(z,t) = k_{1} r(z)t - 2k_{1} \int {\left[ {d(z)r^{2} (z)\left( {k_{2} + \int {\frac{{\varOmega_{1} (z)}}{r(z)}dz} } \right)} \right]dz}, $$
(B2.3)
$$ \phi (z,t) = - \frac{{r_{z} (z)}}{4d(z)r(z)}t^{2} + r(z)\left[ {k_{2} + \int {\frac{{\varOmega_{1} (z)}}{r(z)}dz} } \right]t - \int {\left[ {d(z)r^{2} (z)\left( {k_{2} + \int {\frac{{\varOmega_{1} (z)}}{r(z)}dz} } \right)^{2} } \right]} dz. $$
(B2.4)

(3) When αp = 0, αr = 1/2, αd = − 1/2 and Ω0(z) = 0, under the constraint conditions Ω2(z) = 0 and Γ(z) = rz(z)/2r(z) – dz(z)/2d(z), the self-similar variables are reduced to those reported in Refs. [12, 18]:

$$ A\left( z \right) = k_{1} \left[ {d\left( z \right)/r\left( z \right)} \right]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}, $$
(B3.1)
$$ Z(z) = k_{1}^{2} \int {d(z)} dz ,$$
(B3.2)
$$ T(z,t) = k_{1} t - 2k_{1} \int {d(z)\left( {k_{2} + \int {\varOmega_{1} (z)dz} } \right)dz},$$
(B3.3)
$$ \phi (z,t) = [k_{2} + \int {\varOmega_{1} (z)dz} ]t - \int {[d(z)(k_{2} + \int {\varOmega_{1} (z)} )^{2} ]} dz. $$
(B3.4)

(4) When αp = 1/2, αr = 0, αd = 0, p(z) = wz(z)/w(z) and d(z) = r(z) = 1, Ω0(z) = Ω1(z) = 0, under the constraint conditions Γ(z) = wz(z)/2w(z) and Ω2(z) = wzz(z)/4w(z), the self-similar variables are reduced to those reported in Refs. [33, 34]:

$$ A(z) = \frac{{k_{1} }}{w(z)},$$
(B4.1)
$$ Z(z) = k_{1}^{2} \int {w^{ - 2} (z)} {{d}}z ,$$
(B4.2)
$$ T(z,t) = k_{1} w^{ - 1} (z)t - 2k_{1} k_{2} \int {w^{ - 2} (z){{d}}z}, $$
(B4.3)
$$ \phi (z,t) = \frac{{w_{z} (z)}}{4w(z)}t^{2} + \frac{{k_{2} }}{w(z)}t - k_{2}^{2} \int {\frac{1}{{w^{2} (z)}}} {{d}}z .$$
(B4.4)

It should be pointed out that there is a slight difference among Appendix B and Refs. [11, 12, 18, 33, 34] due to the different coefficients used in the theory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, K., Yang, R., Jia, H. et al. Exact similariton solution families and diverse composite waves in coherently coupled inhomogeneous systems. Nonlinear Dyn 111, 14435–14451 (2023). https://doi.org/10.1007/s11071-023-08574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08574-9

Keywords

Navigation