Skip to main content
Log in

Simple and high-order N-solitons of the nonlocal generalized Sasa–Satsuma equation via an improved Riemann–Hilbert method

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonlocal generalized Sasa–Satsuma (ngSS) equation based on an improved Riemann–Hilbert method (RHM). Different from the traditional RHM, the t-part of the Lax pair plays a more important role rather than the x-part in analyzing the spectral problems. So we start from the t-part of the spectral problems. In the process of dealing with the symmetry reductions, we are surprised to find that the computation is much less than the traditional RHM. We can more easily derive the compact expression of N-soliton solution of the ngSS equation under the reflectionless condition. In addition, the general high-order N-soliton solution of the ngSS equation is also deduced by means of the perturbed terms and limiting techniques. We not only demonstrate different cases for the dynamics of these solutions in detail in theory, but also exhibit the remarkable features of solitons and breathers graphically by demonstrating their 3D, projection profiles and wave propagations. Our results should be significant to understand the nonlocal nonlinear phenomena and provide a foundation for fostering more innovative research that advances the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform: fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  3. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    Article  MathSciNet  Google Scholar 

  5. Sasa, N., Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

    Article  Google Scholar 

  6. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  7. Xu, T., Xu, X.M.: Single-and double-hump femtosecond vector solitons in the coupled Sasa-Satsuma system. Phys. Rev. E 87, 032913 (2013)

    Article  Google Scholar 

  8. Xu, T., Li, M., Li, L.: Anti-dark and Mexican-hat solitons in the Sasa-Satsuma equation on the continuous wave background. Europhys. Lett. 109, 30006 (2015)

    Article  Google Scholar 

  9. Nimmo, J.J.C., Yilmaz, H.: Binary Darboux transformation for the Sasa-Satsuma equation. J. Phys. A: Math. Theor. 48, 425202 (2015)

    Article  MathSciNet  Google Scholar 

  10. Lü, X.: Bright-soliton collisions with shape change by intensity redistribution for the coupled Sasa-Satsuma system in the optical fiber communications. Commun. Nonlinear Sci. Numer. Simul. 19, 3969–3987 (2014)

    Article  MathSciNet  Google Scholar 

  11. Zhao, L.C., Yang, Z.Y., Ling, L.: Localized waves on continuous wave background in a two-mode nonlinear fiber with high-order effects. J. Phys. Soc. Jpn. 83, 104401 (2014)

    Article  Google Scholar 

  12. Wazwaz, A.M., Mehanna, M.: Higher-order Sasa-Satsuma equation: Bright and dark optical solitons. Optik 243, 167421 (2021)

    Article  Google Scholar 

  13. Lü, C.-C., Chen, Y.: Symmetry and exact solutions of (2+1)-dimensional generalized sasa-satsuma equation via a modified direct method. Commun. Theor. Phys. 51, 973–978 (2009)

    Article  MathSciNet  Google Scholar 

  14. Geng, X.G., Wu, J.P.: Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation. Wave Motion 60, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  15. Wu, J.P., Geng, X.G.: Inverse scattering transform of the coupled Sasa-Satsuma equation by Riemann-Hilbert approach. Commun. Theor. Phys. 67, 527–534 (2017)

    Article  MathSciNet  Google Scholar 

  16. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Reverse space-time nonlocal Sasa-Satsuma equation and its solutions. J. Phys. Soc. Jpn. 86, 054001 (2017)

    Article  Google Scholar 

  17. Wang, M.M., Chen, Y.: Novel solitons and higher-order solitons for the nonlocal generalized Sasa-Satsuma equation of reverse-space-time type. Nonlinear Dyn. 110, 753–769 (2022)

    Article  Google Scholar 

  18. Sun, H.-Q., Zhu, Z.N.: Darboux transformation and soliton solution of the nonlocal generalized Sasa-Satsuma equation. Mathematics 11, 865 (2023)

    Article  Google Scholar 

  19. Wang, G.X., Wang, X.-B., Han, B.: Inverse scattering of nonlocal Sasa-Satsuma equations and their multisoliton solutions. Eur. Phys. J. Plus 137, 404 (2022)

    Article  Google Scholar 

  20. Liu, Y.Q., Zhang, W.-X., Ma, W.-X.: Riemann-Hilbert problems and soliton solutions for a generalized coupled Sasa-Satsuma equation. Commun. Nonlinear Sci. Numer. Simul. 118, 107052 (2023)

    Article  MathSciNet  Google Scholar 

  21. Wang, X.-B., Han, B.: The nonlinear steepest descent approach for long time behavior of the two-component coupled Sasa-Satsuma equation with a \(5\times 5\) Lax Pair. Taiwan. J. Math. 25(2), 381–407 (2021)

    Article  Google Scholar 

  22. Yan, X.W., Chen, Y.: Reverse-time type nonlocal Sasa-Satsuma equation and its soliton solutions. Commun. Theor. Phys. 75, 075005 (2023)

    Article  MathSciNet  Google Scholar 

  23. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  Google Scholar 

  24. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  Google Scholar 

  25. Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct. Anal. Appl. 13, 166–174 (1979)

    Article  MathSciNet  Google Scholar 

  26. Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    Article  MathSciNet  Google Scholar 

  27. Biondini, G., Kraus, D., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  Google Scholar 

  28. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhang, G.Q., Yan, Z.Y.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Phys. D 402, 132170 (2020)

    Article  MathSciNet  Google Scholar 

  30. Ma, W.-X., Huang, Y.H., Wang, F.D.: Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies. Stud. Appl. Math. 145, 563–585 (2020)

    Article  MathSciNet  Google Scholar 

  31. Ma, W.-X.: Riemann-hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix akns hierarchies. Physica D 430, 430 (2022)

    Article  MathSciNet  Google Scholar 

  32. Chen, Y., Feng, B.-F., Ling, L.: The robust inverse scattering method for focusing Ablowitz-Ladik equation on the non-vanishing background. Physica D 424, 132954 (2021)

    Article  MathSciNet  Google Scholar 

  33. Wang, G.X., Han, B.: The discrete modified Korteweg-de Vries equation under nonzero boundary conditions. Appl. Math. Lett. 140, 108562 (2023)

    Article  MathSciNet  Google Scholar 

  34. Wu, J.P.: Riemann-Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98, 749 (2019)

    Article  Google Scholar 

  35. Wu, J.P.: A novel Riemann-Hilbert approach via t-part spectral analysis for a physically significant nonlocal integrable nonlinear Schrödinger equation. Nonlinearity 36, 2021–2037 (2023)

    Article  MathSciNet  Google Scholar 

  36. Gagnon, L., Stivenart, N.: N-soliton interaction in optical fibers: the multiple-pole case. Opt. Lett. 19, 619–621 (1994)

    Article  Google Scholar 

  37. Villarroel, J., Ablowitz, M.J.: A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations. Commun. Math. Phys. 207, 1–42 (1999)

    Article  Google Scholar 

  38. Ablowitz, M.J., Charkravarty, S., Trubatch, A.D., Villarroel, J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation. Phys. Lett. A 267, 132–146 (2000)

    Article  MathSciNet  Google Scholar 

  39. Bian, B., Guo, B.L., Ling, L.M.: High-order soliton solution of Landau-Lifshitz equation. Stud Appl Math 134, 181–214 (2015)

    Article  MathSciNet  Google Scholar 

  40. Yang, B., Chen, Y.: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem. Nonlinear Anal. Real. 45, 918–941 (2019)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Z.C., Fan, E.G.: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71, 149 (2020)

    Article  MathSciNet  Google Scholar 

  42. Yang, J.-J., Tian, S.-F., Li, Z.-Q.: Riemann-Hilbert problem for the focusing nonlinear Schrdinger equation with multiple high-order poles under nonzero boundary conditions. Physica D 432, 133162 (2022)

    Article  Google Scholar 

  43. Mao, J.J., Xu, T.Z., Shi, L.F.: Soliton and breather solutions of the higher-order modified Korteweg-de Vries equation with constants background. Z. Angew. Math. Phys. 74, 78 (2023)

    Article  MathSciNet  Google Scholar 

  44. Yang, B., Chen, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn. 94, 489–502 (2018)

    Article  Google Scholar 

  45. Wang, M.M., Chen, Y.: General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan-Porsezian-Daniel equation. Nonlinear Dyn. 111, 655–669 (2023)

    Article  Google Scholar 

  46. Voros, A.: Wentzel-Kramers-Brillouin method in the Bargmann representation. Phys. Rev. A 40(12), 6814 (1989)

    Article  MathSciNet  Google Scholar 

  47. Lou, S.-Y., Huang, F.: Alice-Bob physics: Coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)

    Article  Google Scholar 

  48. Lou, S.-Y.: Alice-bob systems, \(\hat{P}-\hat{T}-\hat{C}\) symmetry invariant and symmetry breaking soliton solutions. J. Math. Phys. 59, 083507 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work of the first author was supported by the National Natural Science Foundation of China (No.12271129) and the China Scholarship Council (No.202206120152). The work of the second author was supported by the National Natural Science Foundation of China (No.12201622). The work of the third author was supported by the China Postdoctoral Science Foundation (2023M733404), the Young Innovative Talents Project of Guangdong Province of China (2022KQNCX104) and the Guangdong Basic and Applied Basic Research Foundation (2022A1515111209). The work of the fourth author was supported by the National Natural Science Foundation of China (No.12271129). The first author appreciates the hospitality of the Department of Mathematics, National University of Singapore, where the work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Han.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (No.12271129 and No.12201622), the China Scholarship Council (No.202206120152), the China Postdoctoral Science Foundation (No.2023M733404), the Young Innovative Talents Project of Guangdong Province of China (No.2022KQNCX104) and the Guangdong Basic and Applied Basic Research Foundation (No.2022A1515111209).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, XB., Long, H. et al. Simple and high-order N-solitons of the nonlocal generalized Sasa–Satsuma equation via an improved Riemann–Hilbert method. Z. Angew. Math. Phys. 75, 94 (2024). https://doi.org/10.1007/s00033-024-02235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02235-6

Keywords

Mathematics Subject Classification

Navigation