Skip to main content
Log in

High-order analytical solutions of bounded relative motions for Coulomb formation flying

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Close-proximity Coulomb formation flying offers attractive prospects in multiple astronautical missions. A semi-analytical method of constructing the series solution up to an arbitrary order for the relative motion near the equilibrium of Coulomb formation systems is proposed to facilitate the design of Coulomb formations based on a Lindstedt–Poincaré method. The details of the series expansion and coefficient solution for arbitrary \(m\!:\!n\)-period orbits are discussed. To verify the effectiveness of the proposed method, the practical convergence domain of the high-order series solution is computed by comparing it with corresponding numerical solutions that satisfy the specified boundary conditions. Simulation results demonstrate the efficacy of the Lindstedt–Poincaré method in constructing series solutions for the relative motion of Coulomb formation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. King, L.B., Parker, G.G., Deshmukh, S., Chong, J.-H.: Spacecraft formation-flying using inter-vehicle coulomb forces. NIAC Phase I Final Report (2002)

  2. Hughes, J., Schaub, H.: Prospects of using a pulsed electrostatic tractor with nominal geosynchronous conditions. IEEE Trans. Plasma Sci. 45(8), 1887–1897 (2017)

    Article  Google Scholar 

  3. Mullen, E., Gussenhoven, M., Hardy, D., Aggson, T., Ledley, B., Whipple, E.: Scatha survey of high-level spacecraft charging in sunlight. J. Geophys. Res. Space Phys. 91(A2), 1474–1490 (1986)

    Article  Google Scholar 

  4. Whipple, E., Olsen, R.: Importance of differential charging for controlling both natural and induced vehicle potentials on ATS-5 and ATS-6 (1980)

  5. Escoubet, C.P., Fehringer, M., Goldstein, M.: Introduction the cluster mission. Ann. Geophys. 19(10/12), 1197–1200 (2001)

    Article  Google Scholar 

  6. Torkar, K., Nakamura, R., Tajmar, M., Scharlemann, C., Jeszenszky, H., Laky, G., Fremuth, G., Escoubet, C., Svenes, K.: Active spacecraft potential control investigation. Space Sci. Rev. 199(1–4), 515–544 (2016)

    Article  Google Scholar 

  7. Parker, G., Schaub, H., Natarajan, A., King, L.: Coulomb force virtual space structures. In: First Workshop on Innovative System Concepts, vol. 633, pp. 39–44 (2006)

  8. Natarajan, A., Schaub, H.: Linear dynamics and stability analysis of a two-craft coulomb tether formation. J. Guid. Control Dyn. 29(4), 831–839 (2006)

    Article  Google Scholar 

  9. Hogan, E.A., Schaub, H.: Linear stability and shape analysis of spinning three-craft coulomb formations. Celest. Mech. Dyn. Astron. 112(2), 131–148 (2012)

    Article  MathSciNet  Google Scholar 

  10. Berryman, J., Schaub, H.: Analytical charge analysis for two-and three-craft coulomb formations. J. Guid. Control. Dyn. 30(6), 1701–1710 (2007)

    Article  Google Scholar 

  11. Inampudi, R., Schaub, H.: Orbit radial dynamic analysis of two-craft coulomb formation at libration points. J. Guid. Control. Dyn. 37(2), 682–691 (2014)

    Article  Google Scholar 

  12. Alikhani, A., Dehghan, M.S., Shafieenejad, I.: Fault tolerant guidance of under-actuated satellite formation flying using inter-vehicle coulomb force. Int. J. Reliab. Risk Saf. Theory Appl. 2(1), 43–52 (2019)

    Article  Google Scholar 

  13. Jones, D. R.: A dynamical systems theory analysis of coulomb spacecraft formations. Ph.D. thesis, Department of Aerospace Engineering, University of Texas at Austin, Austin (2013)

  14. Jones, D.R., Schaub, H.: Collinear three-craft coulomb formation stability analysis and control. J. Guid. Control Dyn. 37(1), 224–232 (2014)

    Article  Google Scholar 

  15. Wang, S.: Patched conic section maneuver trajectory planning for two-craft coulomb formation. IEEE Trans. Aerosp. Electron. Syst. 53(1), 258–272 (2017)

    Article  Google Scholar 

  16. Aslanov, V.S.: Dynamics of a satellite with flexible appendages in the coulomb interaction. J. Guid. Control Dyn. 41(2), 565–572 (2018)

    Article  Google Scholar 

  17. Lin, M., Fu, X., Xu, M., Yan, H.: Coulomb spacecraft formation flying: equilibrium points, periodic orbits, and center manifolds. Phys. D 404, 132357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Memon, M.W., Nazari, M., Seo, D., Butcher, E.A.: Fuel efficiency of fully and underconstrained coulomb formations in slightly elliptic reference orbits. IEEE Trans. Aerosp. Electron. Syst. 57(6), 4171–4187 (2021)

    Article  Google Scholar 

  19. Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.: Linear equations of relative motion. In: Spacecraft Formation Flying: Dynamics, Control and Navigation, pp. 83–121. Elsevier, Oxford (2010)

    Chapter  Google Scholar 

  20. Mostafa, A., El-Saftawy, M.I., Abouelmagd, E.I., López, M.A.: Controlling the perturbations of solar radiation pressure on the Lorentz spacecraft. Symmetry 12(9), 1233 (2020)

    Article  Google Scholar 

  21. Abouelmagd, E.I., Mortari, D., Selim, H.H.: Analytical study of periodic solutions on perturbed equatorial two-body problem. Int. J. Bifurc. Chaos 25(14), 1540040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Abouelmagd, E.I., Elshaboury, S.M., Selim, H.H.: Numerical integration of a relativistic two-body problem via a multiple scales method. Astrophys. Space Sci. 361(1), 38 (2016)

    Article  MathSciNet  Google Scholar 

  23. Amer, T.S., Abady, I.M.: On the application of KBM method for the 3-D motion of asymmetric rigid body. Nonlinear Dyn. 89, 1591–1609 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abouelmagd, E.I.: Periodic solution of the two-body problem by KB averaging method within frame of the modified Newtonian potential. J. Astronaut. Sci. 65(3), 291–306 (2018)

    Article  Google Scholar 

  25. Lakshmikantham, V.: Ordinary differential equations. In: Method of Variation of Parameters for Dynamic Systems, pp. 4–38. Routledge, London (2019)

    Chapter  Google Scholar 

  26. Liang, Y., Xu, M., Xu, S.: High-order solutions of motion near triangular libration points for arbitrary value of \(\mu \). Nonlinear Dyn. 93, 909–932 (2018)

    Article  MATH  Google Scholar 

  27. Marinca, V., Herisanu, N.: Perturbation method: Lindstedt-Poincaré. In: Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches, pp. 9–29. Springer-Verlag, Berlin (2010)

    MATH  Google Scholar 

  28. Pal, A.K., Abouelmagd, E.I., García Guirao, J.L., Brzeziński, D.W.: Periodic solutions of nonlinear relative motion satellites. Symmetry 13(4), 595 (2021)

    Article  Google Scholar 

  29. Yamgoué, S.B.: On the harmonic balance with linearization for asymmetric single degree of freedom non-linear oscillators. Nonlinear Dyn. 69(3), 1051–1062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alam, M., Yeasmin, I., Ahamed, M.S.: Generalization of the modified Lindstedt-Poincare method for solving some strong nonlinear oscillators. Ain Shams Eng. J. 10(1), 195–201 (2019)

    Article  Google Scholar 

  31. Lei, H., Xu, B.: High-order analytical solutions around triangular libration points in the circular restricted three-body problem. Mon. Not. R. Astron. Soc. 434(2), 1376–1386 (2013)

    Article  Google Scholar 

  32. Gomez, G., Marcote, M.: High-order analytical solutions of Hill’s equations. Celest. Mech. Dyn. Astron. 94(2), 197–211 (2006)

  33. Masdemont, J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20(1), 59–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Z., Tang, J.: A generalized padé-lindstedt-poincaré method for predicting homoclinic and heteroclinic bifurcations of strongly nonlinear autonomous oscillators. Nonlinear Dyn. 84(3), 1201–1223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Belhaq, M., Fiedler, B., Lakrad, F.: Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method. Nonlinear Dyn. 23(1), 67–86 (2000)

    Article  MATH  Google Scholar 

  36. Parker, G.G., King, L.B., Schaub, H.: Steered spacecraft deployment using interspacecraft coulomb forces. In: 2006 American Control Conference. IEEE (2006)

  37. Massari, M., Di Lizia, P., Cavenago, F., Wittig, A.: Differential Algebra software library with automatic code generation for space embedded. In: 2018 AIAA Information Systems-AIAA Infotech Aerospace (2018)

  38. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Construction of trajectories with prescribed itineraries. In: Dynamical Systems, the Three-Body Problem and Space Mission Design, pp. 1167–1181. World Scientific, Singapore (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Shanghai Sailing Program (21YF1417500).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ML contributed to the study conception and Methodology and wrote the first draft of the manuscript. JZ contributed to the study conception and carried out project administration. Investigation is performed by MX. XP provided the funding and the support in writing, review and editing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinxiu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (m 1 KB)

Supplementary file 2 (m 2 KB)

Supplementary file 3 (m 1 KB)

Supplementary file 4 (m 1 KB)

Supplementary file 5 (m 0 KB)

Supplementary file 6 (m 2 KB)

Supplementary file 7 (mat 116 KB)

Supplementary file 8 (mat 858 KB)

Supplementary file 9 (mat 2923 KB)

Supplementary file 10 (mat 911 KB)

Supplementary file 11 (txt 443 KB)

Supplementary file 12 (mat 92 KB)

Supplementary file 13 (mat 140 KB)

Supplementary file 14 (mat 140 KB)

Supplementary file 15 (mat 140 KB)

Supplementary file 16 (m 6 KB)

Supplementary file 17 (m 3 KB)

Supplementary file 18 (m 2 KB)

Supplementary file 19 (m 2 KB)

Supplementary file 20 (m 3 KB)

Supplementary file 21 (m 2 KB)

Supplementary file 22 (m 2 KB)

Supplementary file 23 (m 3 KB)

Supplementary file 24 (m 3 KB)

Supplementary file 25 (m 1 KB)

Supplementary file 26 (m 3 KB)

Supplementary file 27 (m 4 KB)

Supplementary file 28 (m 4 KB)

Supplementary file 29 (m 3 KB)

Supplementary file 30 (m 3 KB)

Supplementary file 31 (mat 151 KB)

Supplementary file 32 (mat 1204 KB)

Supplementary file 33 (mat 4608 KB)

Supplementary file 34 (m 0 KB)

Supplementary file 35 (m 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Zhang, J., Xu, M. et al. High-order analytical solutions of bounded relative motions for Coulomb formation flying. Nonlinear Dyn 111, 12931–12946 (2023). https://doi.org/10.1007/s11071-023-08518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08518-3

Keywords

Navigation