Skip to main content
Log in

Application of Lagrangian coherent structures to Coulomb formation on elliptic orbit

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Coulomb thrusting presents attractive prospects in many astronautical missions from the standpoint of close-proximity formation flying. In this study, a dynamical model of Coulomb formation and its Hamiltonian is derived on the basis of the Tschauner–Hempel equation. As a nonautonomous system, it is more complicated than the dynamical model based on the Clohessy–Wiltshire equation. The Lagrangian coherent structure (LCS), a useful tool for describing the dynamical behavior of nonautonomous systems, is used to study the Coulomb formation dynamics, design, and reconfiguration. Simulation results show that, in the autonomous case of Coulomb formation, the LCS coincides with the invariant manifolds in the proper Poincaré section. When it is extended to the nonautonomous case with a small-eccentricity reference orbit, the global morphology of the Coulomb formation dynamics remains almost unchanged. Based on the property that the LCS can act as the transport barrier in dynamical systems, it is used to construct homoclinic and heteroclinic orbits and search for invariant relative orbits and transfer trajectories for formation design and reconfiguration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. King, L.B., Parker, G.G., Deshmukh, S., Chong, J.H.: Spacecraft formation-flying using inter-vehicle coulomb forces. NIAC Phase I Final Report (2012)

  2. Hughes, J., Schaub, H.: Prospects of using a pulsed electrostatic tractor with nominal geosynchronous conditions. IEEE Trans. Plasma Sci. 45(8), 1887–1897 (2017)

    Article  Google Scholar 

  3. Bengtson, M., Hughes, J., Schaub, H.: Prospects and challenges for touchless sensing of spacecraft electrostatic potential using electrons. IEEE Trans. Plasma Sci. 47(8), 3673–3681 (2019)

    Article  Google Scholar 

  4. Torkar, K., Nakamura, R., Tajmar, M., Scharlemann, C., Jeszenszky, H., Laky, G., Fremuth, G., Escoubet, C.P., Svenes, K.: Active spacecraft potential control investigation. Space Sci. Rev. 199(1–4), 515–544 (2016)

    Article  Google Scholar 

  5. Mullen, E.G., Gussenhoven, M.S., Hardy, D.A., Aggson, T.A., Ledley, B.G., Whipple, E.: SCATHA survey of high-level spacecraft charging in sunlight. J. Geophys. Res. Space Phys. 91(A2), 1474–1490 (1986)

    Article  Google Scholar 

  6. Whipple, E.C., Olsen, R.C.: Importance of differential charging for controlling both natural and induced vehicle potentials on ATS-5 and ATS-6. NASA, Lewis Research Center Spacecraft Charging Technol. (1980)

  7. Escoubet, C.P., Fehringer, M., Goldstein, M.: Introduction the cluster mission. Ann. Geophys. 19(10/12), 1197–1200 (2001)

    Article  Google Scholar 

  8. Felicetti, L., Palmerini, G.B.: Analytical and numerical investigations on spacecraft formation control by using electrostatic forces. Acta Astronaut. 123, 455–469 (2016)

    Article  Google Scholar 

  9. Felicetti, L., Palmerini, G.B.: Three spacecraft formation control by means of electrostatic forces. Aerosp. Sci. Technol. 48, 261–271 (2016)

    Article  Google Scholar 

  10. Qi, R., Misra, A.K.: Dynamics of double-pyramid satellite formations interconnected by tethers and coulomb forces. J. Guid. Control Dyn. 39(6), 1265–1277 (2016)

    Article  Google Scholar 

  11. Tahir, A.M., Narang-Siddarth, A.: Constructive nonlinear approach to coulomb formation control. In: 2018 AIAA Guidance, Navigation, and Control Conference, pp. 0868 (2018)

  12. Stevenson, D., Schaub, H.: Multi-sphere method for modeling spacecraft electrostatic forces and torques. Adv. Space Res. 51(1), 10–20 (2013)

    Article  Google Scholar 

  13. Schaub, H., Stevenson, D.: Prospects of relative attitude control using coulomb actuation. J. Astronaut. Sci. 60(3–4), 258–277 (2013)

    Article  Google Scholar 

  14. Stevenson, D.: Remote spacecraft attitude control by coulomb charging. Dissertations & Theses, University of Colorado Boulder (2015)

  15. Aslanov, V.S.: Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque. Nonlinear Dyn. 90(4), 2545–2556 (2017)

    Article  MathSciNet  Google Scholar 

  16. Aslanov, V.S.: Spatial dynamics and control of a two-craft coulomb formation. J. Guid. Control Dyn. 42(12), 2722–2730 (2019)

    Article  Google Scholar 

  17. Nave, G.K., Nolan, P.J., Ross, S.D.: Trajectory-free approximation of phase space structures using the trajectory divergence rate. Nonlinear Dyn. 96(1), 685–702 (2019)

    Article  Google Scholar 

  18. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D Nonlinear Phenom 147(3–4), 352–370 (2000)

    Article  MathSciNet  Google Scholar 

  19. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D Nonlinear Phenom 149(4), 248–277 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kuehn, C., Romano, F., Kuhlmann, H.C.: Tracking particles in flows near invariant manifolds via balance functions. Nonlinear Dyn. 92(3), 983–1000 (2018)

    Article  Google Scholar 

  21. Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronaut. 94(2), 592–607 (2014)

    Article  Google Scholar 

  22. Qi, R., Xu, S.J.: Applications of Lagrangian coherent structures to expression of invariant manifolds in astrodynamics. Astrophys. Space Sci. 351(1), 125–133 (2014)

    Article  Google Scholar 

  23. Sanchez-Martin, P., Masdemont, J.J., Romero-Gomez, M.: From manifolds to Lagrangian coherent structures in galactic bar models. Astron. Astrophys. 618, A72 (2018)

    Article  Google Scholar 

  24. Yeates, A.R., Hornig, G., Welsch, B.T.: Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure. Astron. Astrophys. 539, A1 (2012)

    Article  Google Scholar 

  25. Tanaka, M.L., Ross, S.D.: Separatrices and basins of stability from time series data: an application to biodynamics. Nonlinear Dyn. 58(1–2), 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hadjighasem, A., Farazmand, M., Haller, G.: Detecting invariant manifolds, attractors, and generalized KAM tori in aperiodically forced mechanical systems. Nonlinear Dyn. 73(1–2), 689–704 (2013)

    Article  MathSciNet  Google Scholar 

  27. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D Nonlinear Phenom 212(3–4), 271–304 (2005)

    Article  MathSciNet  Google Scholar 

  28. Lin, M., Xu, M., Fu, X.: GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes. Astrophys. Space Sci. 362(4), 66 (2017)

    Article  MathSciNet  Google Scholar 

  29. Jones, D.R.: A dynamical systems theory analysis of Coulomb spacecraft formations. Dissertations & Theses, University of Texas at Austin (2013)

  30. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos Interdiscip. J. Nonlinear Sci. 10(2), 427–469 (2000)

    Article  MathSciNet  Google Scholar 

  31. Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (11772024, 11432001), and the Fundamental Research Funds for the Central Universities (YWF-16-BJ-Y-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Jacobian matrix of Eq. (11) is given by

$$ \varvec{J} = \left[ {\begin{array}{*{20}c} {\mathcal{0}_{3 \times 3} } & {\mathcal{I}_{3 \times 3} } \\ {\mathcal{J}_{21} } & {\mathcal{J}_{22} } \\ \end{array} } \right],\;\mathcal{J}_{21} = \frac{1}{{\left( {1 + e_{0} \cos f_{0} } \right)}}\left[ {\begin{array}{*{20}c} { - W_{xx} } & { - W_{xy} } & { - W_{xz} } \\ { - W_{xy} } & { - W_{yy} } & { - W_{yz} } \\ { - W_{xz} } & { - W_{yz} } & { - W_{zz} } \\ \end{array} } \right],\;\mathcal{J}_{22} = \left[ {\begin{array}{*{20}c} 0 & 2 & 0 \\ { - 2} & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \right] $$

where

$$ \begin{aligned} W_{xx} & = - 1 + \frac{1}{{\bar{r}_{i}^{3} }} - \frac{{3\left( {1 + \bar{x}} \right)^{2} }}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{\bar{r}_{si} /\bar{\lambda }_{\text{d}} }} }}\left( {1 + \frac{{\bar{r}_{i} }}{{\bar{\lambda }_{\text{d}} }} + \frac{{\left( {\bar{x} - \bar{x}_{i} } \right)^{2} }}{{\bar{\lambda }_{\text{d}} \bar{r}_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{\bar{r}_{si}^{2} }}\left( {\bar{x} - \bar{x}_{i} } \right)^{2} } \right)} \\ W_{yy} & = - 1 + \frac{1}{{\bar{r}_{i}^{3} }} - \frac{{3\bar{y}^{2} }}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{r_{si} /\lambda_{\text{d}} }} }}\left( {1 + \frac{{\bar{r}_{i} }}{{\bar{\lambda }_{\text{d}} }} + \frac{{\left( {\bar{y} - \bar{y}_{i} } \right)^{2} }}{{\bar{\lambda }_{\text{d}} r_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{r_{si}^{2} }}\left( {\bar{y} - \bar{y}_{i} } \right)^{2} } \right)} \\ W_{zz} & = {\text{e}}_{0} \cos f_{0} + \frac{1}{{\bar{r}_{i}^{3} }} - \frac{{3\bar{z}^{2} }}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{r_{si} /\lambda_{\text{d}} }} }}\left( {1 + \frac{{\bar{r}_{i} }}{{\bar{\lambda }_{\text{d}} }} + \frac{{\left( {\bar{z} - \bar{z}_{i} } \right)^{2} }}{{\bar{\lambda }_{\text{d}} \bar{r}_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{r_{si}^{2} }}\left( {\bar{z} - \bar{z}_{i} } \right)^{2} } \right)} \\ W_{xy} & = - \frac{{3\left( {1 + \bar{x}} \right)\bar{y}}}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{\bar{r}_{si} /\bar{\lambda }_{d} }} }}\left( {\frac{{\left( {\bar{x} - \bar{x}_{i} } \right)\left( {\bar{y} - \bar{y}_{i} } \right)}}{{\bar{\lambda }_{\text{d}} \bar{r}_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{\bar{r}_{si}^{2} }}\left( {\bar{x} - \bar{x}_{i} } \right)\left( {\bar{y} - \bar{y}_{i} } \right)} \right)} \\ W_{xz} & = - \frac{{3\left( {1 + \bar{x}} \right)\bar{z}}}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{\bar{r}_{si} /\bar{\lambda }_{d} }} }}\left( {\frac{{\left( {\bar{x} - \bar{x}_{i} } \right)\left( {\bar{z} - \bar{z}_{i} } \right)}}{{\bar{\lambda }_{\text{d}} \bar{r}_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{\bar{r}_{si}^{2} }}\left( {\bar{x} - \bar{x}_{i} } \right)\left( {\bar{z} - \bar{z}_{i} } \right)} \right)} \\ W_{yz} & = - \frac{{3\bar{y}\bar{z}}}{{\bar{r}_{i}^{5} }} + \sum\limits_{i = 1}^{n} {\frac{1}{{\bar{r}_{si}^{3} {\text{e}}^{{\bar{r}_{si} /\bar{\lambda }_{d} }} }}\left( {\frac{{\left( {\bar{y} - \bar{y}_{i} } \right)\left( {\bar{z} - \bar{z}_{i} } \right)}}{{\bar{\lambda }_{\text{d}} \bar{r}_{si} }} - \frac{{\left( {1 + {{\bar{r}_{si} } \mathord{\left/ {\vphantom {{\bar{r}_{si} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)\left( {3 + {{\bar{r}_{i} } \mathord{\left/ {\vphantom {{\bar{r}_{i} } {\bar{\lambda }_{\text{d}} }}} \right. \kern-0pt} {\bar{\lambda }_{\text{d}} }}} \right)}}{{\bar{r}_{si}^{2} }}\left( {\bar{y} - \bar{y}_{i} } \right)\left( {\bar{z} - \bar{z}_{i} } \right)} \right)} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Zheng, Y. & Xu, M. Application of Lagrangian coherent structures to Coulomb formation on elliptic orbit. Nonlinear Dyn 102, 2649–2668 (2020). https://doi.org/10.1007/s11071-020-05968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05968-x

Keywords

Navigation