Skip to main content
Log in

Resonant interactions between lumps/rogue waves and solitons for the (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation. Employing the Kadomtsev–Petviashvili hierarchy reduction, we obtain the semi-rational solutions which describe the interactions between the lumps/rogue waves and the parallel line solitons. We find that the phase difference of two solitons determines the waves amplitudes and the forms of the interactions. Asymptotic analysis shows that the solitons keep their shapes before and after the interactions, which means the interactions are elastic. On the x-y and \(z-y\) planes, the lump waves generate in the middle of solitons, while the line rogue waves only raise on the xz plane. We show the connection with the general form of multi-soliton solutions mathematically, and analyze the interactions through four characteristic lines, which present the shapes and propagation traces of the localized waves. We find that the amplitudes of lumps affect the interaction patterns, as well as the strength and position of soliton. When \(N\ge 3\), interactions among lumps and solitons show more complex phenomena, our analysis summarizes the law of the interaction pattern. The numerical simulations of the nonlinear waves are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are included in this published article.

References

  1. Gu, C.: Soliton theory and its applications. Springer Science and Business Media (2013)

    Google Scholar 

  2. Blow, K.J., Doran, N.J., Nayar, B.K.: Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt. Lett. 14, 754 (1989)

    Article  Google Scholar 

  3. Zhang, S., Zheng, X.: N-soliton solutions and nonlinear dynamics for two generalized Broer-CKaup systems. Nonlinear Dynam. 107, 1179–1193 (2022)

    Article  Google Scholar 

  4. Hu, B.B., Lin, J., Zhang, L.: Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan-Porsezian-Daniel model. Nonlinear Dynam. 107, 2773–2785 (2022)

    Article  Google Scholar 

  5. Manakov, S.V., Zakharov, V.E., Bordag, L.A.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)

    Article  Google Scholar 

  6. Diorio, J., Cho, Y., Duncan, J.H.: Gravity-capillary lumps generated by a moving pressure source. Phys. Rev. Lett. 103, 214502 (2009)

    Article  Google Scholar 

  7. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dynam. 110, 693–704 (2022)

    Article  Google Scholar 

  8. Wang, C., Fang, H., Tang, X.: State transition of lump-type waves for the (2+ 1)-dimensional generalized KdV equation. Nonlinear Dynam. 95, 2943–2961 (2019)

    Article  MATH  Google Scholar 

  9. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dynam. 103, 947–977 (2021)

    Article  Google Scholar 

  10. Rao, J., Chow, K.W., Mihalache, D., He, J.: Completely resonant interaction of lumps and line solitons in the Kadomtsev-Petviashvili I equation. Stud. Appl. Math. 147, 1007–1035 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rao, J., Fokas, A.S., He, J.: Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation. J. Nonlinear Sci. 31, 1–44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Baäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, S.J., Toda, K., Sasa, N., et al.: N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions. J. Phys. A 31, 3337 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Q.M., Gao, Y.T.: Bilinear form, bilinear Bäcklund transformation and dynamic features of the soliton solutions for a variable-coefficient (3+1)-dimensional generalized shallow water wave equation. Mod. Phys. Lett. B 31, 1750126 (2017)

    Article  Google Scholar 

  15. Huang, Q.M., Gao, Y.T., Jia, S.L., et al.: Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation. Nonlinear Dynam. 87, 2529–2540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, X., Tian, B., Qu, Q. X., et al.: Kadomtsev-Petviashvili hierarchy reduction, soliton and semi-rational solutions for the (3+1)-dimensional generalized variable-coefficient shallow water wave equation in a fluid. Int. J. Comput. Math. 1-19 (2021)

  17. Chen, W. Q., Guan, Q. F., Jiang, C.F., et al.: Nonautonomous motion study on accelerated and decelerated lump waves for a (3+1)-Dimensional generalized shallow water wave equation with variable coefficients. Complexity 2019, (2019)

  18. Hu, C.C., Tian, B., Qu, Q.X., Yang, D.Y.: The higher-order and multi-lump waves for a (3+1)-dimensional generalized variable-coefficient shallow water wave equation in a fluid. Chinese J, Phys (2021)

  19. Liu, J.G., Zhu, W.H.: Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans. Comput. Math. Appl. 78, 848–856 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Liu, J.G., Zhu, W.H., He, Y., Lei, Z.Q.: Characteristics of lump solutions to a (3+1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science. Eur. Phys. J. Plus 134, 1–7 (2019)

    Article  Google Scholar 

  21. Yan, Z.Y.: New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation. Phys. Lett. A 318, 78–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, T.X., et al.: Non-travelling wave solutions to a (3+1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos, Solitons Fractals 34, 1006–1013 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yin, H.M., Tian, B., Chai, J., et al.: Solitons and bilinear Bäcklund transformations for a (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice. Appl. Math. Lett. 58, 178–183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W.: Rogue waves of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Rom. Rep. Phys 69, 16 (2017)

    Google Scholar 

  25. Hirota, R.: The direct method in soliton theory. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  26. Hu, B.B., Lin, J., Zhang, L.: On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. J. Comput. Appl. Math. 390, 113393 (2021)

    Article  MATH  Google Scholar 

  27. Hu, B.B., Lin, J., Zhang, L.: Riemann-Hilbert problem associated with the vector Lakshmanan-Porsezian-Daniel model in the birefringent optical fibers. Math. Meth. Appl. Sci. 45(17), 11545–11561 (2022)

    Article  MathSciNet  Google Scholar 

  28. Hu, B.B., Lin, J., Zhang, L.: On the Riemann–Hilbert problem for the integrable three-coupled Hirota system with a \(4\times 4\) matrix Lax pair. Appl. Math. Comput. 428, 127202 (2022)

    MATH  Google Scholar 

  29. Hu, B.B., Lin, J., Zhang, L.: The initial-boundary value problems of the new two-component generalized Sasa-Satsuma equation with a \(4\times 4\) matrix Lax pair. Anal. Math. Phys. 12, 109 (2022)

    Article  MATH  Google Scholar 

  30. Klein, C., Roidot, K.: Fourth order time-stepping for Kadomtsev-CPetviashvili and Davey-CStewartson equations. SIAM J. Sci. Comput. 33, 3333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ohta, Y., Yang, J.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

  32. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)

  33. Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A 46, 105202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mu, G., Qin, Z.: Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation. Nonlinear Anal.: Real World Appl. 31, 179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ohta, Y., Yang, J.: General rogue waves in the focusing and defocusing Ablowitz-Ladik equations. J Phys. A 47, 255201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundamental Research Funds for the Central Universities No. BLX201927, Funded by China Postdoctoral Science Foundation under Grant No. 2019M660491 and Funded by the Natural Science Foundation of Hebei Province (Grant No. A2021502003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we will prove that Solutions (5) satisfy Bilinear Equation (3). Via the idea of Refs. [31, 32], we consider the following coefficient transformation

$$\begin{aligned}{} & {} x_1=\zeta =x-\omega z,~~x_2=i\sqrt{\omega } y,~~x_3=-\omega t, \end{aligned}$$

where \(x_i\)’s are the same as the variable coefficient defined in Refs. [31, 32].

We consider the \(\tau \) functions which meet the KP hierarchy [31,32,33,34,35] and set the Grammian determinant

$$\begin{aligned}{} & {} \tau _{n}(x,y,z,t)=\det _{1\le r,j\le N} \left( m^{(n)}_{rj}\right) , \end{aligned}$$
(A.1)

where \(m^{(n)}_{rj}\), \(\varphi ^{(n)}_{i}\) and \(\psi ^{(n)}_{j}\) are the functions of variables x, y, z and t, satisfying the following differential and difference relations

Using the differential formula of determinant

$$\begin{aligned} \partial _ { x }\det _{1\le r,j\le N} ( a _ { r j } ) = \sum _ { r, j = 1 } ^ { N } A _ { r j } \partial _ { x }a_ { i j } \end{aligned}$$

and the expansion formula of bordered determinant

$$\begin{aligned} \begin{vmatrix} a _ { r j }&{ b _ { r} }\\ { c _ { j } }&{ d } \end{vmatrix} = - \sum A _ { r j } b _ { r } c _ { j } + d \det ( a _ { r j } ) \end{aligned}$$

where \(A _ { r j }\) is the \((r,j)-\)cofactor of the matrix \((a _ { r j })\), we can verify the derivative of the Tau Function (A.1) as follows:

$$\begin{aligned}{} & {} \partial _{\zeta }\tau _{n}=\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{-\psi _{j}}^{(n)}&{0}\end{vmatrix},\nonumber \\{} & {} \partial _{\zeta }^2\tau _{n}=\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}\\{-\psi _{j}}^{(n)}&{0}\end{vmatrix}+\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-1)}&{0}\end{vmatrix},\nonumber \\{} & {} \partial _{\zeta }^3\tau _{n}=\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+2)}\\ {-\psi _{j}}^{(n)}&{0}\end{vmatrix}+2\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}\\{\psi _{j}}^{(n-1)}&{0} \end{vmatrix}\nonumber \\{} & {} \quad +\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{-\psi _{j}}^{(n-2)}&{0}\end{vmatrix},\nonumber \\{} & {} \partial _{\zeta }^4\tau _{n}=\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+3)}\\ {-\psi _{j}}^{(n)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad +3\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+2)}\\{\psi _{j}}^{(n-1)}&{0}\end{vmatrix}+3\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}\\{-\psi _{j}}^{(n-2)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad +\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-3)}&{0}\end{vmatrix} +2\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-1)}&{0}&{0}\\{-\psi _{j}}^{(n)}&{0}&{0}\end{vmatrix},\nonumber \\{} & {} \partial _{y}\tau _{n}{=}i\sqrt{\omega }\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n{+}1)}\\{{-}\psi _{j}}^{(n)}&{0} \end{vmatrix}{+}i\sqrt{\omega }\begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{{-}\psi _{j}}^{(n{-}1)}&{0}\end{vmatrix}\!\!,\nonumber \\{} & {} \partial _{y}^2\tau _{n}=\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+3)}\\{\psi _{j}}^{(n)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad -\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}\\{\psi _{j}}^{(n-2)}&{0}\end{vmatrix}-\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+2)}\\{-\psi _{j}}^{(n-1)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad -\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-3)}&{0}\end{vmatrix}-2 \omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-1)}&{0}&{0}\\{-\psi _{j}}^{(n)}&{0}&{0}\end{vmatrix},\nonumber \\{} & {} \partial _{t}\tau _{n}=\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+2)}\\{\psi _{j}}^{(n)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad +\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-2)}&{0}\end{vmatrix}+\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}\\{\psi _{j}}^{(n-1)}&{0}\end{vmatrix}\nonumber \\{} & {} \partial _{\zeta }\partial _{t}\tau _{n}=\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+3)}\\ {\psi _{j}}^{(n)}&{0}\end{vmatrix}+\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n)}\\ {\psi _{j}}^{(n-3)}&{0}\end{vmatrix}\nonumber \\{} & {} \quad +\omega \begin{vmatrix}{m_{rj}}^{(n)}&\varphi _r^{(n+1)}&\varphi _r^{(n)}\\{\psi _{j}}^{(n-1)}&{0}&{0}\\{-\psi _{j}}^{(n)}&{0}&{0}\end{vmatrix}.\nonumber \\ \end{aligned}$$
(A.2)

Combined with the definition of the bilinear differential operators, we calculate and simplify Bilinear Equation (3) as follows:

$$\begin{aligned}{} & {} \left( -\omega D_{\zeta }^4-4D_{\zeta } D_t+3 D_y^2\right) \tau _ { n }\cdot \tau _ { n }\\{} & {} \quad =\tau _ { n } \left( -2 \omega \partial _{\zeta }^4\tau _ { n } +6 \partial _{y}^2\tau _ { n }-8 \partial _{\zeta }\tau _ { n }\partial _{t}\tau _ { n }\right) \\{} & {} \quad -6 \omega \left( \partial _{\zeta }^2\tau _ { n }\right) ^2\\{} & {} \quad +8 \omega \partial _{\zeta }\tau _ { n } \partial _{\zeta }^3\tau _ { n }-6 \left( \partial _{y}\tau _ { n }\right) ^2+8 \partial _{t}\tau _ { n } \partial _{\zeta }\tau _ { n }\\{} & {} \quad =-24\omega \begin{vmatrix} { m _ { r j } }^{ ( n ) }\end{vmatrix} \times \begin{vmatrix} { m _ { r j } }^{ ( n ) }&\varphi _r^{ ( n+1 ) }&\varphi _r^{ ( n ) } \\ { \psi _ { j } } ^ { ( n-1 ) }&{ 0 }&{ 0 }\\ { - \psi _ { j } } ^ { ( n ) }&{ 0 }&{ 0 } \end{vmatrix}\\{} & {} \quad +24\omega \begin{vmatrix} { m _ { r j } }^{ ( n ) }&\varphi _r^{ ( n +1) } \\ { - \psi _ { j } } ^ { ( n ) }&{ 0 } \end{vmatrix}\times \begin{vmatrix} { m _ { r j } }^{ ( n ) }&\varphi _r^{ ( n ) } \\ { -\psi _ { j } } ^ { ( n-1 ) }&{ 0 }\end{vmatrix}\\{} & {} \quad -24\omega \begin{vmatrix}{ m _ { r j } }^{ ( n ) }&\varphi _r^{ ( n +1) } \\ { \psi _ { j } } ^ { ( n-1 ) }&{ 0 }\end{vmatrix}\times \begin{vmatrix} { m _ { r j } }^{ ( n ) }&\varphi _r^{ ( n) } \\ { \psi _ { j } } ^ { ( n) }&{ 0 }\end{vmatrix}. \end{aligned}$$

By comparing the Jacobian formula of determinant

$$\begin{aligned}{} & {} \begin{vmatrix} { a _ { rj } }\end{vmatrix}\times \begin{vmatrix} {a _ { rj }}&{b _ { r }}&{c _ { r } }\\ d _ {j }&e&f\\ g _ {j }&h&k \end{vmatrix}=\begin{vmatrix} {a _ { rj }}&{c _ { r } }\\ g _ { j }&k \end{vmatrix}\times \begin{vmatrix} {a _ { rj }}&{b _ { r } }\\ d _ { j }&a _ { e } \end{vmatrix}-\begin{vmatrix} {a _ { rj }}&{c _ { r } }\\ d _ { j }&f \end{vmatrix}\nonumber \\{} & {} \quad \times \begin{vmatrix} {a _ { rj }}&{b _ { r } }\\ g _ { j }&h \end{vmatrix} \end{aligned}$$
(A.3)

we can prove \(\tau _{n}\) satisfies Bilinear Equation (3).

We derive the following solutions

$$\begin{aligned}{} & {} \tau _n=\det _{1\le r, j\le N}\left( m_{rj}^{(n)}\right) ,\\{} & {} m_{rj}^{(n)}=\int \phi _r^{(n)}\psi _j^{(n)}dx_1,\\{} & {} \phi _r^{(n)}=A_rp_r^ne^{\xi _r},~~\psi _j^{(n)}=B_j(-q_j)^{-n}e^{\eta _r},\\{} & {} A_r=\sum _{k=0}^{n_r}C_{rk}(\partial _{p_r})^{n_r-k},~~B_j=\sum _{l=0}^{n_j}D_{jl}(\partial _{q_j})^{n_j-l}, \end{aligned}$$

where \(\xi _r\)’s and \(\eta _j\)’s are the functions with respect to the variables x, y, z and t, defined as,

$$\begin{aligned}{} & {} \xi _r=p_r(x-\omega z)+i\sqrt{\omega }{p_r}^2y -{p_r}^3 \omega t+\xi _{0 r},\\{} & {} \eta _j=q_j(x-\omega z)-i\sqrt{\omega }{q_j}^2y -{q_j}^3 \omega t+\eta _{0 j}, \end{aligned}$$

with r and j being two integers and \(p_r\)’s, \(q_j\)’s, \(\xi _{0 r}\)’s and \(\eta _{0j}\)’s being the complex constants. Through some calculations, the element \(m_{rj}^{(n)}\) can be written as follows:

$$\begin{aligned}{} & {} m_{rj}^{(n)}=\delta _{rj}+e^{\xi _r+\eta _r}\left( -\frac{p_r}{q_j}\right) ^n\sum _{k=0}^{n_r}C_{rk}\\{} & {} \quad \times \left( \partial _{p_r}+\xi '_r+\frac{n}{p_r}\right) ^{n_r-k}\\{} & {} \quad \times \sum _{l=0}^{n_j}D_{jl}\left( \partial _{q_j}+\eta '_j-\frac{n}{q_j}\right) ^{n_j-l}\frac{1}{p_r+q_j}, \end{aligned}$$

where \(\beta _{rj}\)’s are real constants. Setting some conditions

$$\begin{aligned}{} & {} p_r=q_j^*,~~C_{rk}=D_{rk}^*,~~\xi _{0 r}=\eta _{0 r}^*,~~\beta _{rj}=\beta _{j r},\\{} & {} x_1=\xi =x-\omega z,~~x_2=i\sqrt{\omega } y,~~x_3=-\omega t, \end{aligned}$$

we get that function.

$$\begin{aligned}{} & {} \xi _{r}=\eta _{r}^*,~~ m_{rj}^{(n)}=m_{j r}^{(-n)*},~~ \tau _n=\tau _{-n}^*, \end{aligned}$$

and \(\tau _0\) is a real functions, with “\(*\)” being the complex conjugate. We can verify that \(f(x,y,z,t)=\tau _0\) is a real.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XY., Yuan, YQ. & Du, Z. Resonant interactions between lumps/rogue waves and solitons for the (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn 111, 14395–14408 (2023). https://doi.org/10.1007/s11071-023-08438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08438-2

Keywords

Navigation