Skip to main content
Log in

Evolutionary dynamics of body size subject to dispersal and advection

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the evolution of body size of population subject to dispersal and advection. For this purpose, we consider a reaction–diffusion system for competing species with hostile boundary conditions, which models population dynamics in advective environments. First, with the methods of adaptive dynamics, we discuss the stability of evolutionary singular strategy; specifically, evolutionary conditions for continuously stable strategy and evolutionary branching are obtained. Second, by theoretical analysis and numerical simulations, we investigate the influence of dispersal and advection on the evolution trend of body size and high-level polymorphism. Our results show that in environments without advection, the result of evolution mainly depends on competition coefficients, intrinsic growth rates and biological dispersal. In particular, the evolution of the body size will tend to the slow disperser with the increase in the dispersal rate if regardless of the influence of body size on competitiveness and growth rate. But there will be different results in advective environments, the increasing dispersal rate may lead to the evolution of the body size toward a intermediate level. A small or a moderate dispersal rate is likely to stimulate the emergence of evolutionary branching. In addition, our results predict that for hostile boundary conditions, advection can promote evolutionary stability, which prevent the emergence of evolutionary branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and materials sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Bantam Books (1993)

    Google Scholar 

  2. Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277, 489–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129–2160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D.: Dispersal. Oxford University Press, Oxford (2001)

    Google Scholar 

  5. Cosner, C.: A dynamic model for the ideal-free distribution as a partial differential equation. Theor. Popul. Biol. 67, 101–108 (2005)

    Article  MATH  Google Scholar 

  6. Hambrock, R., Lou, Y.: The evolution of conditional dispersal strategy in spatially heterogeneous habitats. Bull. Math. Biol. 71, 1793–1817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantrell, R.S., Cosner, C., Lou, Y.: Movement towards better environments and the evolution of rapid diffusion. Math. Biosci. 240, 199–214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, J., Yuan, S., Zhang, T.: Complex dynamics of a predator–prey system with herd and schooling behavior: with or without delay and diffusion. Nonlinear Dyn. 104, 1709–1735 (2021)

    Article  Google Scholar 

  9. Du, Y.H., Hsu, S.B.: On a nonlocal reaction–diffusion problem arising from the modeling of phytoplankton growth. SIAM. J. Math. Anal. 42, 1305–1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, C., Yuan, S., Wang, H.: Spatiotemporal patterns of a diffusive prey–predator model with spatial memory and pregnancy period in an intimidatory environment. J. Math. Biol. (2022). https://doi.org/10.1007/s00285-022-01716-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Series in Mathematical and Computational Biology, Wiley, New York (2003)

    MATH  Google Scholar 

  12. Cantrell, R.S., Cosner, C., DeAngelis, D.L., Padr’on, V.: The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn. 1, 249–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lam, K.Y., Lou, Y.: Evolutionarily stable and convergent stable strategies in reaction–diffusion models for conditional dispersal. Bull. Math. Biol. 76, 261–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hastings, A.: Can spatial variation alone lead to selection for dispersal. Theor. Popul. Biol. 24, 244–251 (1983)

    Article  MATH  Google Scholar 

  15. Cantrell, R.S., Cosner, C., Lewis, M.A., Lou, Y.: Evolution of dispersal in spatial population models with multiple timescales. J. Math. Biol. 80, 3–37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, W., Baek, S., Ahn, I.: Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment. J. Math. Biol. 78, 2141–2169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muller, K.: The colonization cycle of freshwater insects. Oecologica 53, 202–207 (1982)

    Article  Google Scholar 

  18. Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology 82, 1219–1237 (2001)

    Article  Google Scholar 

  19. Lam, K.Y., Lou, Y.: Evolution of conditional dispersal: evolutionarily stable strategies in spatial models. J. Math. Biol. 68, 851–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69, 1319–1342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vasilyeva, O., Lutscher, F.: Competition of three species in an advective environment. Nonlinear Anal. Real World Appl. 13, 1730–1748 (2012)

  22. Vasilyeva, O., Lutscher, F.: Competition in advective environments. Bull. Math. Biol. 74, 2935–2958 (2012)

  23. Chen, X., Hambrock, R., Lou, Y.: Evolution of conditional dispersal, a reaction–diffusion–advection model. J. Math. Biol. 57, 361–386 (2008)

  24. Demetrius, L.: Directionality theory and the evolution of body size. Proc. Biol. 267, 2385–2391 (2000)

    Article  Google Scholar 

  25. Zu, J., Mimura, M., Takeuchi, Y.: Adaptive evolution of foraging-related traits in a predator–prey community. J. Theor. Biol. 268, 14–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meng, X., Liu, R., Zhang, T.: Adaptive dynamics for a non-autonomous Lotka–Volterra model with size-selective disturbance. Nonlinear Anal. Real World Appl. 16, 202–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metz, J., Nisbet, R., Geritz, S.: How should we define fitness for general ecological scenarios. Trends. Ecol. Evol. 76, 198–202 (1992)

    Article  Google Scholar 

  28. Dieckmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diekmann, O.: A beginner’s guide to adaptive dynamics. Banach. Center. Publ. 63, 47–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Geritz, S.A.H., Gyllenberg, M.: The Mathematical Theory of Adaptive Dynamics. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  31. Geritz, S.A.H., Kisdi, E., Meszena, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998)

    Article  Google Scholar 

  32. Kisdi, E.: Evolutionary branching under asymmetric competition. J. Theor. Biol. 197, 149–162 (1999)

    Article  Google Scholar 

  33. Ferriere, R., Rinaldi Dercole, F.S.: Ecological bistability and evolutionary reversals under asymmetrical competition. Evolution 56, 1081–1090 (2002)

    Google Scholar 

  34. Ma, J., Levin, S.: Dynamics and management of stage-structured fish stocks. Bull. Math. Biol. 68, 1111–1123 (2006)

    Article  MathSciNet  Google Scholar 

  35. Svennungsen, T., Kisdi, A.: Evolutionary branching of virulence in a single-infection model. J. Theor. Biol. 257, 408–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zu, J., Wang, K., Mimura, M.: Evolutionary branching and evolutionarily stable coexistence of predator species: critical function analysis. Math. Biosci. 231, 210–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, S., Yuan, S., Wang, H.: Adaptive dynamics of a stoichiometric phosphorus–algae–zooplankton model with environmental fluctuations. J. Nonlinear Sci. (2022). https://doi.org/10.1007/s00332-022-09794-w

    Article  MathSciNet  MATH  Google Scholar 

  38. Hsu, S.B., Hubbell, S., Waltman, P.A.: Mathematical theory for single-nutrient competition in cocontinuous cultures of micro-organisms. SIAM. J. Math. Appl. 32, 366–383 (1997)

    Article  MATH  Google Scholar 

  39. Kisdi, E.: Evolutionary branching under asymmetric competition. J. Theor. Biol. 197, 149–162 (1999)

    Article  Google Scholar 

  40. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tilman, D., Lehman, C.L.: Human-caused environmental change: impacts on plant diversity and evolution. P. Natl. Acad. Sci. USA 98, 5433–5440 (2001)

  42. Jansen, V., Mulder, G.: Evolving biodiversity. Ecol. Lett. 2, 379–386 (1999)

  43. Foster, J.B.: The evolution of mammals in islands. Nature 202, 234–235 (1964)

    Article  Google Scholar 

  44. Matsuda, H., Abrams, P.A.: Runaway evolution to self-extinction under asymmetrical competition. Evolution 48, 1764–1772 (1994)

    Google Scholar 

  45. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12271308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhu Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The following differential system is constructed about eigenvalue

$$\begin{aligned} \left\{ \begin{array}{ll} d(s_{i})\frac{\partial ^{2} N_{i}}{\partial x^{2}}-q(s_{i})\frac{\partial N_{i}}{\partial x}=-\lambda (s_{i})N_{i},\\ N_{i}(0)=N_{i}(L)=0, \end{array} \right. \end{aligned}$$

\((i=1,2)\). It is not difficult to verify that if \(q^{2}(s_{i})-4d(s_{i})\lambda (s_{i})\ge 0\), then \(N_{i}=0\). If \(q^{2}(s_{i})-4d(s_{i})\lambda (s_{i})<0\),

$$\begin{aligned} N_{i}(x)= & {} e^{\frac{q(s_{i})}{2d(s_{i})}x}\bigg (C_{1}\cos \frac{\sqrt{4d(s_{i})\lambda (s_{i})-q^{2}(s_{i})}}{2d(s_{i})}x\\{} & {} +C_{2}\sin \frac{\sqrt{4d(s_{i})\lambda (s_{i})-q^{2}(s_{i})}}{2d(s_{i})}x\bigg ). \end{aligned}$$

According to \(N_{i}(0)=N_{i}(L)=0\), we can get \(C_{1}=0\),

$$\begin{aligned} \frac{\sqrt{4d(s_{i})\lambda (s_{i})-q^{2}(s_{i})}}{2d(s_{i})}L=k\pi , \end{aligned}$$

where k is positive integer. Therefore, the dominant eigenvalue of the advection–diffusion operator satisfies

$$\begin{aligned} \lambda (s_{i})=\frac{q^{2}(s_{i})}{4d(s_{i})}+\frac{\pi ^{2}d(s_{i})}{L^{2}}. \end{aligned}$$

Appendix B: Proof of Proposition 2

Evolutionary singular strategy is the solution of the following equation

$$\begin{aligned} r'(s)-\lambda '(s)+\frac{\beta }{1+v}(r(s)-\lambda (s))=0. \end{aligned}$$

Let

$$\begin{aligned} \phi _{1}(s)= & {} r'(s)+\frac{\beta }{1+v}r(s)=b\Big (\sqrt{s^{2}+e}\!-\!s\Big )\\{} & {} \left( \frac{\beta }{1+v}\!-\!\frac{1}{\sqrt{s^{2}+e}}\right) , \\ \phi _{2}(s)= & {} \lambda '(s)\!+\!\frac{\beta }{1+v}\lambda (s)\\= & {} \frac{\pi ^{2}}{L^{2}}d(s,p_{d})\left( \frac{\sigma _{d}^{2}\beta +(1+v) s_{d}}{(1+v)\sigma _{d}^{2}}\!-\!\frac{s}{\sigma _{d}^{2}}\right) , \end{aligned}$$

then

$$\begin{aligned} \phi _{1}(0)= & {} \frac{b(\beta \sqrt{e}-1-v)}{1+v},\phi _{2}(0)\\ {}= & {} \frac{\pi ^{2}k_{1}p_{d}\big (\beta \sigma _{d}^{2}+(1+v) s_{d}\big )}{L^{2}(k_{2}+p_{d})(1+v)\sigma _{d}^{2}}\exp \left( \frac{-s_{d}^{2}}{2\sigma _{d}^{2}} \right) . \end{aligned}$$

The evolutionary singular strategy can be regarded as the solution of the following equation equivalently,

$$\begin{aligned} \phi _{1}(s)-\phi _{2}(s)=0. \end{aligned}$$

We discuss the following four situations, respectively.

  1. (i)

    \(\kappa _{1}<1\), \(\kappa _{2}<1\) is equivalent to \(\phi _{1}(0)<0\), \({\tilde{s}}_{2}<{\tilde{s}}_{1}\). This implies \(\phi _{1}({\tilde{s}}_{2})-\phi _{2}({\tilde{s}}_{2})<0\), \(\phi _{1}({\tilde{s}}_{1})-\phi _{2}({\tilde{s}}_{1})>0\), due to zero point theorem, there is at least one singular point \(s^{*}\in (\tilde{s_{2}},\tilde{s_{1}})\), and \(\phi _{1}(s^{*})=\phi _{2}(s^{*})<0\). And it is not difficult to verify that there is no evolutionary singular strategy outside \((\tilde{s_{2}},\tilde{s_{1}})\).

  2. (ii)

    \(\kappa _{1}<1\), \(\kappa _{2}>1\) is equivalent to \(\phi _{1}(0)<0\), \({\tilde{s}}_{2}>{\tilde{s}}_{1}\). This means \(\phi _{1}({\tilde{s}}_{2})-\phi _{2}({\tilde{s}}_{2})>0\), \(\phi _{1}({\tilde{s}}_{1})-\phi _{2}({\tilde{s}}_{1})<0\), in this case there is at least one singular point \(s^{*}\in (\tilde{s_{1}},\tilde{s_{2}})\), and \(\phi _{1}(s^{*})=\phi _{2}(s^{*})>0\). And there is no evolutionary singular strategy outside \((\tilde{s_{1}},\tilde{s_{2}})\).

  3. (iii)

    \(\kappa _{1}>1\) implies \(\phi _{1}(0)>0\), \(0<\kappa _{3}<1\) means \(0<\phi _{1}(0)<\phi _{2}(0)\). Considering \(\phi _{1}({\tilde{s}}_{2})-\phi _{2}({\tilde{s}}_{2})>0\), there is at least one singular point \(s^{*}\in (0,\tilde{s_{2}})\), and \(\phi _{1}(s^{*})=\phi _{2}(s^{*})>0\). If \(s>\tilde{s_{2}}\), \(\varPhi _{1}(s)\varPhi _{1}(s)<0\), thus, there is no evolutionary singular strategy in \((\tilde{s_{2}},\infty )\).

  4. (iv)

    If \(\kappa _{1}>1\) and \(\kappa _{3}>1\), the singular points may not exist; if it exists, we can get \(s^{*}\in (0,\tilde{s_{2}})\), and \(\phi _{1}(s^{*})=\phi _{2}(s^{*})>0\).

The proof of the proposition is completed.

Appendix C: Proof of Proposition 3

Evolutionary singular strategies are the points that satisfy the following equation

$$\begin{aligned} D(s^{*})=\phi _{1}(s^{*})-\phi _{2}(s^{*})=0. \end{aligned}$$

Although we do not have the explicit expression of evolutionary singular strategies, we can calculate the derivative of \(s^{*}\) with respect to \(p_{d}\) indirectly by implicit differential equation. It is given by

$$\begin{aligned} \frac{\textrm{d}s^{*}}{\textrm{d}p_{d}}=-\frac{\frac{\partial D(s^{*})}{\partial p_{d}}}{\frac{\partial D(s^{*})}{\partial s^{*}}}=\frac{\frac{\partial \phi _{2}(s^{*})}{\partial p_{d}}}{\frac{\partial D(s^{*})}{\partial s^{*}}}=\frac{k_{2} \phi _{2}(s^{*})}{\big (p_{d}(k_{2}+p_{d})\big )\frac{\partial D(s^{*})}{\partial s^{*}}}.\nonumber \\ \end{aligned}$$
(32)

For the convergence stable strategy \(s^{*}\), \(\frac{\partial D(s^{*})}{\partial s^{*}}<0\), according to the proof of Proposition 2, if \(\kappa _{i}<1\ (i=1,2)\), then the numerator of Eq. (32) is negative. Thus, the derivative of \(s^{*}\) with respect to \(p_{d}\) is positive. Otherwise, the derivative of \(s^{*}\) with respect to \(p_{d}\) is negative. The proof is complete.

Appendix D: Proof of Proposition 4

By calculation, we can obtain

$$\begin{aligned} \frac{\partial D(s^{*})}{\partial p_{d}}= & {} \frac{2q(s^{*},p_{q})d(s^{*},p_{d})q'_{s}(s^{*},p_{q})d'_{p_{d}}(s^{*},p_{d})}{4d^{3}(s^{*},p_{d})}\\{} & {} +\frac{q^{2}(s^{*},p_{q})d(s^{*},p_{d})d''_{s,p_{d}}(s^{*},p_{d})}{4d^{3}(s^{*},p_{d})}\nonumber \\{} & {} -\frac{2q^{2}(s^{*},p_{q})d'_{p_{d}}(s^{*},p_{d})d'_{s}(s^{*},p_{d})}{4d^{3}(s^{*},p_{d})}\\{} & {} +\frac{\beta q^{2}(s^{*},p_{q})d'_{p_{d}}(s^{*},p_{d})}{4(1+v)d^{2}(s^{*},p_{d})}\nonumber \\{} & {} -\frac{\pi ^{2}d''_{s,p_{d}}(s^{*},p_{d})}{L^{2}}-\frac{\beta \pi ^{2}d'_{p_{d}}(s^{*},p_{d})}{(1+v)L^{2}} \nonumber \\= & {} \frac{k_{2}q^{2}(s^{*},p_{q})}{4(k_{2}+p_{d})p_{d}d(s^{*},p_{d})}\\{} & {} \Big (2\frac{s_{q}-s^{*}}{\sigma ^{2}_{q}} -\frac{s_{d}-s^{*}}{\sigma ^{2}_{d}}+\frac{1+v}{\beta }\Big )\nonumber \\{} & {} +\frac{\pi ^{2}k_{2}d(s^{*},p_{d})}{L^{2}(k_{2}+p_{d})p_{d}}\Big (\frac{s^{*}-s_{d}}{\sigma ^{2}_{d}}-\frac{1+v}{\beta }\Big ). \end{aligned}$$

If condition (i) or condition (ii) of Proposition 4 holds, then \(\frac{\textrm{d} s^{*}}{\textrm{d} p_{d}}>0\), and if condition (iii) or condition (iv) of Proposition 4 holds, then \(\frac{d s^{*}}{d p_{d}}<0\). The proof is completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Meng, X. & Qi, H. Evolutionary dynamics of body size subject to dispersal and advection. Nonlinear Dyn 111, 11655–11670 (2023). https://doi.org/10.1007/s11071-023-08415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08415-9

Keywords

Navigation