Skip to main content
Log in

Consequences and benefits of utilizing continuous vibro-impact representations in constrained pipeline conveying fluid systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effectiveness of continuous vibro-impact forcing representations for the cantilevered pipe that conveys fluid is explored and analyzed. The previously accepted forcing model utilizing a smoothened trilinear spring is estimated using three continuous forcing representations, namely, polynomial, rational polynomial, and hyperbolic tangent. The accuracy of the estimated forcing functions is investigated and analyzed by calculating the root mean square error, and bifurcation diagrams are generated and compared to the nominal system. Additionally, the dynamic response of the system is further characterized using Poincare maps, power spectra, and basins of attraction. Once all continuous forcing representations are analyzed and compared to the nominal system, the computational cost of each method is examined, and further limitations of the hyperbolic tangent method are discovered. It is proved that the hyperbolic tangent forcing representation most accurately captures the dynamic response of the pipeline, and the least accurate representation is the rational polynomial representation. Additionally, considerable computational cost is saved when employing the hyperbolic tangent representation compared to the discontinuous representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Semler, C., Li, G.X., Paidoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577–599 (1994)

    Article  MATH  Google Scholar 

  2. Paidoussis, M.P., Li, G.X., Rand, R.H.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J. Appl. Mech. 58, 559–565 (1991)

    Article  Google Scholar 

  3. Paidoussis, M.P., Moon, F.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2, 567–591 (1988)

    Article  Google Scholar 

  4. Paidoussis, M.P., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4, 655–670 (1993)

    Article  Google Scholar 

  5. Wang, L., Liu, Z.Y., Abdelkefi, A., Wang, Y.K., Dai, H.: Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints. Int. J. Non-Linear Mech. 95, 19–29 (2017)

    Article  Google Scholar 

  6. Paidoussis, M.P., Semler, C., Wadham-Gagnon, M., Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23, 569–587 (2007)

    Article  Google Scholar 

  7. Yoon, J.-Y., Kim, B.: Effect and feasibility analysis of the smoothening functions for clearance-type nonlinearity in a practical driveline system. Nonlinear Dyn. 3(85), 1651–1664 (2016)

    Article  Google Scholar 

  8. Kim, T.C., Rook, T.E., Singh, R.: Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J. Sound Vib. 3(263), 665–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shin, Y., Sass, D., Jendrzejczyk, J.A.: Vibro-impact responses of a tube with tube-baffle interaction. Trans. Can. Soc. Mech. Eng. 5(1), 15–23 (1978)

    Article  Google Scholar 

  10. Whiston, G.: The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator. J. Sound Vib. 115(2), 303–319 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jing, H.-S., Young, M.: Random response of a single-degree-of-freedom vibro-impact system with clearance. Earthq. Eng. Struct. Dyn. 19(6), 789–798 (1990)

    Article  Google Scholar 

  12. Saunders, B., Vascancellos, R., Kuether, R., Abdelkefi, A.: Insights on the continuous representations of piecewise-smooth nonlinear systems: limits of applicability and effectiveness. Nonlinear Dyn. 107, 1479–1494 (2022)

    Article  Google Scholar 

  13. Vasconcellos, R., Abdelkefi, A., Marques, F., Hajj, M.: Representation and analysis of control surface freeplay. J. Fluids Struct. 31, 79–91 (2012)

    Article  Google Scholar 

  14. Dai, H., Yue, X., Yuan, J., Xie, D., Alturi, S.: A comparison of classical Runge–Kutta and Henon’s methods for capturing chaos and chaotic transients in an aeroeastic system with freeplay nonlinearity. Nonlinear Dyn. 81, 169–188 (2015)

    Article  MATH  Google Scholar 

  15. Wayhs-Lopes, L., Dowell, E., Bueno, D.: Influence of friction and asymmetric freeplay on the limit cycle oscillation in aeroelastic system: an extended Henon’s technique to temporal integration. J. Fluids Struct. 96, 103054 (2020)

    Article  Google Scholar 

  16. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mecanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)

    Article  MATH  Google Scholar 

  17. Zhou, K., Dai, H.L., Abdelkefi, A., Ni, Q.: Theroretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers. Int. J. Mech. Sci. 166, 1681–1874 (2020)

    Article  Google Scholar 

  18. Alvis, T., Abelkefi, A.: Effectiveness and nonlinear characterization of vibro-impact energy harvesting absorbers in controlling base-excited systems. Smart Mater. Struct. 30, 9 (2021)

    Article  Google Scholar 

  19. Alvis, T., Abdelkefi, A.: Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers. Eur. Phys. J. Spec. Top. 231, 1567–1586 (2022)

    Article  Google Scholar 

  20. Lai, Z., Thomson, G., Yurchenko, D., Val, D., Rodgers, E.: On energy harvesting from a vibro-impact oscillator with dielectric membranes. Mech. Syst. Signal Process. 107, 105–121 (2018)

    Article  Google Scholar 

  21. Lai, Z., Wang, S., Zhu, L., Zhang, G., Wang, J., Yang, K., Yurchnko, D.: A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced-vibration energy harvesting. Mech. Syst. Signal Process. 150, 107212 (2021)

    Article  Google Scholar 

  22. Ostasevicius, V., Dauksevicius, R., Gaidys, R., Palevicius, A.: Numerical analysis of fluid-structure interaction effects on vibrations of cantilever microstructure. J. Sound Vib. 308, 660–673 (2007)

    Article  Google Scholar 

  23. Ostasevicius, V., Gaidys, R., Dauksevicius, R.: Numerical analysis of dynamic effects of a nonlinear vibro-impact process for enhancing the reliability of contact-type MEMS devices. Sensors 9, 10202–10216 (2009)

    Article  Google Scholar 

  24. Li, T., Lamarque, C.-H., Seguy, S., Berlioz, A.: Chaotic characteristic behavior of a linear oscillator coupled with vibro-impact nonlinear energy sink. Nonlinear Dyn. 91, 2319–2330 (2018)

    Article  Google Scholar 

  25. Luo, G.-W., Xie, J.-H.: Hopf Bifurcation of a two-degree-of freedom vibro-impact system. J. Sound Vib. 11(3), 391–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Pavlovskaia, E., Wiercigroch, M., Peng, Z.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Non-Linear Mech. 70, 30–46 (2015)

    Article  Google Scholar 

  27. Ashley, H., Haviland, G.: Bending vibrations of a pipe line containing flowing fluid. J. Appl. Mech. 17, 229–232 (1950)

    Article  MathSciNet  Google Scholar 

  28. Zhou, K., Ni, Q., Dai, H., Wang, L.: Nonlinear forced vibrations of supported pipe conveying fluid. J. Sound Vib. 471, 115189 (2020)

    Article  Google Scholar 

  29. Wang, L.: A further study on the non-linear dynamics of simply supported pipes conveying. Int. J. Non-Linear Mech. 44, 115–121 (2009)

    Article  Google Scholar 

  30. Yi-min, H., Young-shou, L., Bao-hui, L., Yan-jiang, L., Zhu-feng, Y.: Natural frequency analysis of fluid conveying pipeline with different boundary conditions. Nucl. Eng. Des. 240, 461–467 (2010)

    Article  Google Scholar 

  31. Maalawi, K., Ziada, M.: On the static instability of flexible pipes. J. Fluids Struct. 5(16), 685–690 (2002)

    Article  Google Scholar 

  32. Modarres-Sadeghi, Y., Semler, C., Wadham-Gagnon, M., Paidoussis, M.P.: Dynamics of cantilevered pipes conveying fluid. Part 3: three-dimensional dynamics in the presence of an end-mass. J. Fluids Struct. 23(4), 589–603 (2007)

    Article  Google Scholar 

  33. Modarres-Sadeghi, Y., Paidoussis, M.: Nonlinear dynamics of extensible fluid-conveying pipes. J. Fluids Struct. 25, 535–543 (2009)

    Article  Google Scholar 

  34. Mostafa, N.: Effect of a viscoelastic foundation on the dynamic stability. Int. J. Appl. Sci. Eng. 12, 59–74 (2014)

    Google Scholar 

  35. Gregory, R.W., Paidoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid II. Experiments. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 293(1435), 428–542 (1966)

    Google Scholar 

  36. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  37. Paidoussis, M.P.: Flow-induced instabilities of cylindrical structures. ASME Appl. Mech. Rev. 40(2), 163–175 (1987)

    Article  Google Scholar 

  38. Paidoussis, M.P., Li, G.X., Moon, F.: Chaotic osccillations of the autonomous system of a constrained pipe conveying fluid. J. Sound Vib. 135(1), 1–19 (1989)

    Article  MATH  Google Scholar 

  39. Paidoussis, M.P., Semler, C.: Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. J. Fluids Struct. 7, 269–298 (1993)

    Article  Google Scholar 

  40. Semler, C., Paidoussis, M.P.: Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J. Fluids Struct. 10(7), 787–825 (1996)

    Article  Google Scholar 

  41. Paidoussis, M.P., Grinevich, E., Adamovic, D., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 1: physical dynamics. J. Fluids Struct. 16(6), 691–713 (2002)

    Article  Google Scholar 

  42. Lopes, J.-L., Paidoussis, M.P., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: The equations of motion. J. Fluids Struct. 16(6), 715–737 (2002)

    Article  Google Scholar 

  43. Semler, C., Lopes, J.L., Augu, N., Paidoussis, M.P.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 3: nonlinear dynamics. J. Fluids Struct. 16(6), 739–759 (2002)

    Article  Google Scholar 

  44. Rinaldi, S., Paidoussis, M.P.: Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece. J. Fluids Struct. 26(3), 517–525 (2010)

    Article  Google Scholar 

  45. Ghayesh, M.H., Païdoussis, M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45(5), 507–524 (2010)

    Article  Google Scholar 

  46. Rinaldi, S., Païdoussis, M.P.: Theory and experiments on the dynamics of a free-clamped cylinder in confined axial air-flow. J. Fluids Struct. 28, 167–179 (2012)

    Article  Google Scholar 

  47. Giacobbi, D.B., Semler, C., Paidoussis, M.P.: Dynamics of pipes conveying fluid of axially varying density. J. Sound Vib. 473, 115202 (2020)

    Article  Google Scholar 

  48. Paidoussis, M.P., Abdelbaki, A.R., Faisal, B.M.F.J., Tavallaeinejad, M., Moditis, K., Misra, A.K., Nahon, M., Ratigan, J.L.: Dynamics of a cantilevered pipe subjected to internal and reverse external axial flow: a review. J. Fluids Struct. 106, 103349 (2021)

    Article  Google Scholar 

  49. Butt, M.F.J., Paidoussis, M.P., Nahon, M.: Dynamics of a confined pipe aspirating fluid and concurrently subjected to external axial flow: an experimental investigation. J. Fluids Struct. 104, 103299 (2021)

    Article  Google Scholar 

  50. Saunders, B., Vasconcellos, R., Kuether, R., Abdelkefi, A.: Characterization and interaction of geometric and contact/impact nonlinearities in dynamical systems. Mech. Syst. Signal Process. 167, 108481 (2022)

    Article  Google Scholar 

  51. Taylor, G., Ceballes, S., Abdelkefi, A.: Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid. Nonlinear Dyn. 93, 1261–1275 (2018)

    Article  Google Scholar 

  52. Bajaj, A.K., Sethna, P.R., Lundgren, T.S.: Hopf bifurcation phenomena in tubes carrying a fluid. SIAM J. Appl. Math. 2(39), 213–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. Alvis, T., Ceballes, S., Abdelkefi, A.: Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid. Int. J. Mech. Mater. Des. (2021)

  54. Zhu, H., Wang, W., Yin, X.: Spectral element method for vibration analysis of three-dimensional pipes conveying fluid. Int. J. Mech. Mater. Des. 15, 345–360 (2019)

    Article  Google Scholar 

  55. Dai, J., Liu, H., Miao, C., Tong, G.: A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid. Int. J. Mech. Mater. Des. 15, 715–726 (2019)

    Article  Google Scholar 

  56. Guo, X., Xiao, C., Ge, H., Ma, H., Li, H., Sun, W., Liu, Z.: Dynamic modeling and experimental study of a complex fluid-conveying pipeline system with series and parallel structures. Appl. Math. Model. 109, 186–208 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  57. Khudayarov, B., Turaev, F.: Mathematical simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid. Appl. Math. Model. 66, 662–679 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, Y., Tang, M., Yang, M., Qin, T.: Three-dimensional dynamics of a cantilevered pipe conveying pulsating fluid. Appl. Math. Model. 114, 502–524 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  59. Askarian, A., Permoon, M., Zahedi, M., Shakouri, M.: Stability analysis of viscoelastic pipes conveying fluid with different boundary conditions described by fractional Zener model. Appl. Math. Model. 103, 750–763 (2022)

    Article  MathSciNet  Google Scholar 

  60. Liang, F., Gao, A., Yang, X.: Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans. Appl. Math. Model. 83, 454–469 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Niordson, F.I.: "Vibrations of a Cylindrical Tube Containing Fluid, vol. 73. Kungliga Tekniska Hogskolans Handlingar (1953)

    MATH  Google Scholar 

  62. Paidoussis, M.P.: A review of flow-induced vibrations in reactors and reactor components. Nucl. Eng. Des. 74(1), 31–60 (1983)

    Article  Google Scholar 

  63. Lai, Z., Yang, S., Lu, L., Tan, T., Sun, L.: Two-phase flow-induced vibration fatigue damage of tube bundles with clearance restriction. Mech. Syst. Signal Process. 166, 108442 (2022)

    Article  Google Scholar 

  64. Housner, G.W.: Bending vibrations of a pipe when liquid flows through it. J. Appl. Mech. 19, 205–208 (1952)

    Article  Google Scholar 

  65. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid-I. Theory. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 261(1307), 487–499 (1961)

    MathSciNet  MATH  Google Scholar 

  66. Paidoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7(2), 137–204 (1993)

    Article  Google Scholar 

  67. Paidoussis, M.P.: Pipes conveying fluid: a fertile dynamics problem. J. Fluids Struct. 114, 103664 (2022)

    Article  Google Scholar 

  68. Ratigan, J.: Underground storage of hydrocarbons in salt formations. In: American Gas Association Conference, Las Vegas (1995)

  69. Askarian, A.R., Haddapour, H., Firouz-Abadi, R., Abtahi, H.: Nonlinear dynamics of extensible visoelastic cantilevered pipes conveying pulsatile flow with an end nozzle. Int. J. Non-Linear Mech. 91, 22–35 (2017)

    Article  Google Scholar 

  70. Wang, L., Hong, Y., Dai, H., Ni, Q.: Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech. Solida Sin. 29, 567–576 (2016)

    Article  Google Scholar 

  71. Paidoussis, M.P.: 1992 Calvin Rice Lecture: some curiosity-driven research in fluid structure ineteractions and its current applications. J. Press. Vessel Technol. 115(1), 2–14 (1993)

    Article  Google Scholar 

  72. Ibrahim, R.A.: Mechanics of pipes conveying fluids—part II: applications and fluidelastic problems. J. Press. Vessel Technol. 133, 2 (2011)

    Article  Google Scholar 

  73. Chen, S., Rosenber, G.: Vibration and stability of tube exposed to pulsating parallel flow. Trans. Am. Nucl. Soc. 13, 335–336 (1970)

    Google Scholar 

  74. Ren, Y., Li, L., Jin, Q., Nie, L.P.F.: Vibration and snapthrough of fluid-conveying graphene-reinforced composite pipes under low-velocity impact. AIAA J. 59(12), 5091–5105 (2021)

    Article  Google Scholar 

  75. Li, L., Nie, L., Ren, Y., Jin, Q.: On the impact process and stress field of functionally graded graphene reinforced composite pipes with a viscoelastic interlayer. J. Vib. Control 10775463221095297 (2022)

  76. Ni, Q., Wang, Y., Tang, M., Luo, Y., Yan, H., Wang, L.: Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dyn. 81, 893–906 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors T. Alvis and A. Abdelkefi would like to thank Sandia National Laboratories for their funding of this project. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.

Funding

Funding is provided by Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Dimensional equation of motion:

$$ \begin{aligned} & EI\left( {Y^{iv} + \eta \dot{Y}^{iv} } \right) + \left( {m + M} \right)gY^{\prime} + 2MU\dot{Y}^{\prime} + MU^{2} Y^{\prime\prime} - \left( {m + M} \right)g\left( {L - S} \right)Y^{\prime\prime} + \left( {m + M} \right)\ddot{Y} + 2MU\dot{Y}^{\prime}Y^{{\prime}{2}} \\ & \quad + Y^{\prime\prime}Y^{{\prime}{2}} \left[ {MU^{2} - \frac{3}{2}\left( {m + M} \right)g\left( {L - S} \right)} \right] + \frac{1}{2}g\left( {m + M} \right)Y^{{\prime}{3}} + EI\left( {Y^{iv} Y^{{\prime}{2}} + 4Y^{\prime\prime\prime}Y^{\prime\prime}Y^{\prime} + Y^{{\prime\prime}{3}} } \right) \\ & \quad - Y^{\prime\prime}\left[ {\int_{s}^{L} {2MUY^{\prime}\dot{Y}^{\prime} + MU^{2} Y^{\prime}Y^{\prime\prime} + \int_{0}^{s} {\left( {m + M} \right)\left( {\dot{Y}^{{\prime}{2}} + Y^{\prime}\ddot{Y^{\prime}}} \right){\text{d}}S} \,{\text{d}}S} } \right] + Y^{\prime}\int_{0}^{s} {\left( {m + M} \right)\left( {\dot{Y}^{{\prime}{2}} + Y^{\prime}\ddot{Y}^{\prime}} \right){\text{d}}S = 0} \\ \end{aligned} $$
(10)

Terms from Eq. (4)

$$ C_{ij} = \xi \int_{0}^{1} {\lambda^{4} \phi_{j} \phi_{i} {\text{d}}s = \delta_{ij} \xi_{i} \lambda_{i}^{2} } $$
(11)
$$ \left( {Cu} \right)_{ij} = 2\sqrt {m_{r} } \int_{0}^{1} {\phi^{\prime}_{j} \phi_{i} } \, $$
(12)
$$ K_{ij} = \int_{0}^{1} {\left[ {\lambda^{4} \phi_{j} - \gamma \left( {1 - s} \right)\phi^{\prime\prime}_{j} + \phi^{\prime}_{j} } \right]\phi_{i} {\text{d}}s} $$
(13)
$$ \left( {Ku} \right)_{ij} = \int\limits_{0}^{1} {\phi^{\prime\prime}_{j} \phi_{i} {\text{d}}s} $$
(14)
$$ C = C_{ij} + u\left( {C_{u} } \right)_{ij} $$
(15)
$$ K = K_{ij} + u^{2} \left( {K_{u} } \right)_{ij} $$
(16)
$$ M_{ijkl} = \int_{0}^{1} {\left( {\phi^{\prime}_{l} \int_{0}^{s} {\phi^{\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{1} {\int_{0}^{s} {\phi^{\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} {\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(17)
$$ N_{ijkl} = 2\sqrt {m_{r} } \int_{0}^{1} {\left( {\phi^{\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} + \phi^{\prime}_{l} \int_{0}^{s} {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{1} {\left( {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s - \int_{0}^{s} {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} } \right){\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(18)
$$ \begin{gathered} P_{ijkl} = \int_{0}^{1} {} \left[ { - \frac{3}{2}\gamma \left( {1 - s} \right)\phi^{\prime\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} - \frac{1}{2}g\phi^{\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} + 3\phi^{\prime\prime\prime}_{l} \phi^{\prime\prime}_{k} \phi^{\prime}_{j} + \phi^{\prime\prime}\phi^{\prime\prime}\phi^{\prime\prime}} \right. \hfill \\ + \phi^{\prime}_{l} \int_{0}^{s} {\left( {\gamma \left( {1 - s} \right)\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} + \phi_{k}^{\prime \prime \prime } \phi^{\prime\prime}_{j} } \right){\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{1} {\left( {\left( { - \gamma \phi^{\prime}_{k} \phi^{\prime}_{j} + \phi_{k}^{iv} \phi^{\prime\prime}_{j} } \right){\text{d}}s} \right.} \hfill \\ \left. {\left. { + \int_{0}^{s} {\left( {\gamma \left( {1 - s} \right)\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} + \phi_{k}^{iv} \phi^{\prime\prime}_{j} } \right)_{j} {\text{d}}s} } \right){\text{d}}s} \right]\phi_{i} {\text{d}}s \hfill \\ \end{gathered} $$
(19)
$$ \left( {Pu} \right)_{ijkl} = \int_{0}^{1} {\left( {\phi^{\prime\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} - \phi^{\prime}_{l} \int_{0}^{s} {\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{1} {\left( {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s - \int_{0}^{s} {\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} } \right){\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(20)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvis, T., Saunders, B.E. & Abdelkefi, A. Consequences and benefits of utilizing continuous vibro-impact representations in constrained pipeline conveying fluid systems. Nonlinear Dyn 111, 9095–9125 (2023). https://doi.org/10.1007/s11071-023-08357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08357-2

Keywords

Navigation