Skip to main content
Log in

Experimental and theoretical investigation of superharmonic resonances in a planar oscillator under angular base excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper explores the complicated dynamic behavior of a mechanical oscillator under harmonic angular excitation. The motivation behind this work comes from the nature of the actuation produced by high-performance dither motors. A lumped-mass model, which captures the primary and the 1 : 2 superharmonic resonances observed on an analogous experimental test setup, is put forward. The equations of motion governing the dynamics of the model are derived and are found to comprise both parametric and direct forcing terms. The governing equations are solved analytically using the generalized harmonic balance method and numerical integration. The method of multiple scales is utilized to obtain closed-form expressions that relate the system parameters to the oscillation amplitudes in the vicinity of the direct and the 1 : 2 superharmonic resonances. It is found that eccentricity plays a vital role in the occurrence of the resonances. Besides, the relationship between the excitation amplitudes and the resulting oscillations for the direct and the superharmonic resonances are dissimilar. A few salient differences between classical (rectilinear) and angular base excitation mechanisms are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Notes

  1. \(\omega =1480.3\) rad/s, length \(l_0=0.0000135\) m, \(\zeta =0.00085\). Non-dimensional parameters \(x_e=2\) and \(y_e=12.5\). Details of parameter estimation are provided in Appendix B.

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  2. Burns, J.A.: More on pumping a swing. Am. J. Phys. 38(7), 920–922 (1970)

    Article  Google Scholar 

  3. Ruby, L.: Applications of the mathieu equation. Am. J. Phys. 64(1), 39–44 (1996)

    Article  MathSciNet  Google Scholar 

  4. Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149–152 (1998)

    Article  Google Scholar 

  5. Lee, D., Moon, G., Lee, J.: Mechanical dither design for ring laser gyroscope. J. Mech. Sci. Technol. 16(4), 485–491 (2002)

    Google Scholar 

  6. Yu, X., Wei, G., Long, X., Tang, J.: Finite element analysis and optimization of dither mechanism in dithered ring laser gyroscope. Int. J. Precis. Eng. Manuf. 14(3), 415–421 (2013)

    Article  Google Scholar 

  7. Yu, X., Long, X.: Parametric design of mechanical dither with bimorph piezoelectric actuator for ring laser gyroscope. Int. J. Appl. Electromagnet Mech 47(2), 305–312 (2015)

    Article  Google Scholar 

  8. Lazarus, A., Prabel, B., Combescure, D.: A 3d finite element model for the vibration analysis of asymmetric rotating machines. J. Sound Vib. 329(18), 3780–3797 (2010)

    Article  Google Scholar 

  9. Bucher, I., Shomer, O.: Asymmetry identification in rigid rotating bodies-theory and experiment. Mech. Syst. Signal Process. 41(1–2), 502–509 (2013)

    Article  Google Scholar 

  10. Anilkumar, A., Kartik, V.: In-plane vibration of a rigid body attached to a flexible rotating beam. J. Sound Vib. 475, 115245 (2020)

    Article  Google Scholar 

  11. Sawicki, J. T., Kulesza, Z.: Stability of a cracked rotor subjected to parametric excitation. J. Eng. Gas Turbines Power 137(5), 052508 (2015)

  12. Ganesan, S., Padmanabhan, C.: Modelling of parametric excitation of a flexible coupling-rotor system due to misalignment. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225(12), 2907–2918 (2011)

    Article  Google Scholar 

  13. Childs, D.W.: Rub-induced parametric excitation in rotors. J. Mech. Des. 101(4), 640–644 (1979)

    Google Scholar 

  14. Song, Z., Chen, Z., Li, W., Chai, Y.: Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. Meccanica 52(4), 1159–1173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qaderi, M., Hosseini, S., Zamanian, M.: Combination parametric resonance of nonlinear unbalanced rotating shafts. J. Comput. Nonlinear Dyn. 13(11), 111002 (2018)

  16. Sheu, H., Chen, L.: A lumped mass model for parametric instability analysis of cantilever shaft-disk systems. J. Sound Vib. 234(2), 331–348 (2000)

    Article  Google Scholar 

  17. Yang, F., Pei, Y.: Dynamics and phase-based vibration suppression of rotating flexible shaft with unstressed initial deformation under several parametric excitations. J. Sound Vib. 509, 116248 (2021)

    Article  Google Scholar 

  18. Bulatović, Ž, Štavljanin, M., Tomić, M., Knežević, D., Biočanin, S.L.: Measurement and analysis of angular velocity variations of twelve-cylinder diesel engine crankshaft. Mech. Syst. Signal Process. 25(8), 3043–3061 (2011)

    Article  Google Scholar 

  19. Turhan, Ö., Bulut, G.: Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed. J. Sound Vib. 280(3–5), 945–964 (2005)

    Article  Google Scholar 

  20. Georgiades, F.: Nonlinear dynamics of a spinning shaft with non-constant rotating speed. Nonlinear Dyn. 93(1), 89–118 (2018)

    Article  Google Scholar 

  21. Natsiavas, S.: On the dynamics of rings rotating with variable spin speed. Nonlinear Dyn. 7(3), 345–363 (1995)

    Article  MathSciNet  Google Scholar 

  22. Asokanthan, S.F., Cho, J.: Dynamic stability of ring-based angular rate sensors. J. Sound Vib. 295(3–5), 571–583 (2006)

    Article  Google Scholar 

  23. Asokanthan, S. F., Arghavan, S., Bognash, M.: Stability of ring-type mems gyroscopes subjected to stochastic angular speed fluctuation. J. Vib. Acoust. 139(4), 040904 (2017)

  24. Mendes, A., Meirelles, P., Zampieri, D.: Analysis of torsional vibration in internal combustion engines: modelling and experimental validation. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 222(2), 155–178 (2008)

    Google Scholar 

  25. Liu, S., Li, Y., He, M., Wang, B., Liu, B.: Bifurcation and stability study in coupling nonlinear rotating machinery’s system under the influence of time-varying stiffness, in: Proceedings of the 10th World Congress on Intelligent Control and Automation, IEEE, pp. 1263–1268 (2012)

  26. Fourati, A., Bourdon, A., Feki, N., Rémond, D., Chaari, F., Haddar, M.: Angular-based modeling of induction motors for monitoring. J. Sound Vib. 395, 371–392 (2017)

    Article  Google Scholar 

  27. Filipi, Z.S., Assanis, D.N.: A nonlinear, transient, single-cylinder diesel engine simulation for predictions of instantaneous engine speed and torque. J. Eng. Gas Turbines Power 123(4), 951–959 (2001)

    Article  Google Scholar 

  28. Falcone, P., De Gennaro, M. C., Fiengo, G., Glielmo, L., Santini, S., Langthaler, P.: Torque generation model for diesel engine, in: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 2, IEEE, pp. 1771–1776 (2003)

  29. Hwang, S., Perkins, N., Ulsoy, A., Meckstroth, R.: Rotational response and slip prediction of serpentine belt drive systems, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 11788, American Society of Mechanical Engineers, pp. 61–71 (1993)

  30. Ramakrishnan, V., Feeny, B. F.: Resonances of a forced mathieu equation with reference to wind turbine blades, J. Vib. Acoust. 134(6), 064501 (2012)

  31. HaQuang, N., Mook, D.T., Plaut, R.H.: Non-linear structural vibrations under combined parametric and external excitations. J. Sound Vib. 118(2), 291–306 (1987)

    Article  MATH  Google Scholar 

  32. Plaut, R.H., Gentry, J.J., Mook, D.T.: Non-linear structural vibrations under combined multi-frequency parametric and external excitations. J. Sound Vib. 140(3), 381–390 (1990)

  33. Yagasaki, K., Sakata, M., Kimura, K.: Dynamics of a weakly nonlinear system subjected to combined parametric and external excitation. ASME J. Appl. Mech. 57(1), 209–217 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. El-Bassiouny, A., Kamel, M., Abdel-Khalik, A.: Two-to-one internal resonances in nonlinear two degree of freedom system with parametric and external excitations. Math. Comput. Simul. 63(1), 45–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chiba, M., Shimazaki, N., Ichinohe, K.: Dynamic stability of a slender beam under horizontal-vertical excitations. J. Sound Vib. 333(5), 1442–1472 (2014)

    Article  Google Scholar 

  36. Bauomy, H.S., El-Sayed, A.T.: Control of a two-degree-of-freedom system with combined excitations. Arch. Civil Mech. Eng. 15(2), 492–508 (2015)

    Article  Google Scholar 

  37. Praveen Krishna, I., Padmanabhan, C.: Improved reduced order solution techniques for nonlinear systems with localized nonlinearities. Nonlinear Dyn. 63(4), 561–586 (2011)

    Article  MathSciNet  Google Scholar 

  38. Balaji, N.N., Praveen Krishna, I., Padmanabhan, C.: A multi-harmonic generalized energy balance method for studying autonomous oscillations of nonlinear conservative systems. J. Sound Vib. 422, 526–541 (2018)

    Article  Google Scholar 

  39. Anilkumar, A., Kartik, V.: Eigen and temporal characteristics of multi-frequency parametrically-excited rotor-oscillator systems. J. Sound Vib. 493, 115824 (2021)

    Article  Google Scholar 

  40. Anilkumar, A., Kartik, V.: Stability characteristics of multi-frequency parametrically-excited rotor-oscillator systems. J. Sound Vib. 497, 115939 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Kurien Isaac K. (IIST) and Shri. Manoj Augustine Cherian (IISU, ISRO) for sharing their knowledge during this research, and Shri. Ullas Jose (IISU, ISRO) for assistance with the literature survey.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Praveen Krishna.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of the equations of motion

The equations of motion (EoM) governing the system of Fig. 1 are derived as follows. The position vector \(\vec {P}\) of mass m is

$$\begin{aligned} \vec {P}=\left( x+x_e\right) {\hat{i}}+\left( y+y_e\right) {\hat{j}} \end{aligned}$$
(56)

where \({\hat{i}}\) and \({\hat{j}}\) are unit vectors along the axes marked X and Y. The time derivative,

$$\begin{aligned} {\frac{d\vec {P}}{dt}}={\vec {P}}'={x}'{\hat{i}}+\left( x+x_e\right) {{\hat{i}}}'+{y}'{\hat{j}}+\left( y+y_e\right) {{\hat{j}}}' \end{aligned}$$
(57)

where \(\left( \bullet \right) '\) denotes differentiation with respect to time t. The derivatives of the unit vector are \({{\hat{i}}}'=\Omega \vec {k} \times \vec {i}=\Omega \vec {j}\) and \({{\hat{j}}}'=\Omega \vec {k} \times \vec {j}=-\Omega \vec {i}\). Using these relations, Eq. (57) can be expressed as

$$\begin{aligned} {\vec {P}'}=\left( {x}'-\left( y+y_e\right) \Omega \right) {\hat{i}}+\left( {y}'+\left( x+x_e\right) \Omega \right) {\hat{j}}. \end{aligned}$$
(58)

The quantity \(\left( {\vec {P}}'\right) ^2\) is

$$\begin{aligned} \begin{aligned}&\quad {\vec {P}'}\,^2={x'}^2+y^2\Omega ^2+y_e^2\Omega ^2+2yy_e\Omega ^2-2{x'}y\Omega \\&\quad -2{x'}y_e\Omega +{y'}^2+x^2\Omega ^2+x_e^2\Omega ^2\\&\quad +2xx_e\Omega ^2+2x{y'}\Omega +2x_e{\dot{y}}\Omega . \end{aligned} \end{aligned}$$
(59)

The kinetic energy of the mass m is \(T=\frac{1}{2}m {\vec {P}'}\,^2\), and the potential energy stored in the springs is \(V=\frac{1}{2}k_x x^2+\frac{1}{2}k_y y^2\). This form of potential energy strictly models a linear spring which describes the motion of a small magnitude about the mean position. Note that large amplitude oscillations, where geometric nonlinearities can be significant, are not of interest in this work. The Lagrangian \(L=T-V\) of the system is developed, and the damping terms are included in the formulation by employing the Rayleigh dissipation function.

$$\begin{aligned} R=\frac{1}{2} c{x'}^2+\frac{1}{2} c{y'}^2. \end{aligned}$$
(60)

Following the Euler-Lagrange equations,

$$\begin{aligned} \frac{d}{dt}\left( \frac{\partial L}{\partial {q_i'}}\right) -\frac{\partial L}{\partial {q_i}}=-\frac{\partial R}{\partial {q_i'}}, \quad i=1,2 \end{aligned}$$
(61)

where \(q_1=x\) and \(q_2=y\), the EoM are derived as

$$\begin{aligned}{} & {} m{x''}+c{x'}+k_xx=2m{y'}\Omega +m\left( y+y_e\right) {\Omega '}\nonumber \\{} & {} \quad +m\left( x+x_e\right) \Omega ^2 \end{aligned}$$
(62)

and

$$\begin{aligned}{} & {} m{y''}+c{y'}+k_yy=-2m{x'}\Omega -m\left( x+x_e\right) {\Omega '}\nonumber \\{} & {} \quad +m\left( y+y_e\right) \Omega ^2. \end{aligned}$$
(63)

This work explores the effect of angular base excitation, and therefore it is assumed that \(\Omega ={\overline{\Omega }}\sin \lambda t\). The following equations can be obtained by substituting this function in Eqs. (62) and (63).

$$\begin{aligned}{} & {} m{x''}+c{x'}+k_xx=2m{y'}{\overline{\Omega }}\sin \lambda t+m\left( y+y_e\right) \nonumber \\{} & {} \quad {{\overline{\Omega }}\lambda \cos \lambda t}+m\left( x+x_e\right) {\overline{\Omega }}^2\sin ^2\lambda t \end{aligned}$$
(64)
$$\begin{aligned}{} & {} m{y''}+c{y'}+k_yy=-2m{x'}{\overline{\Omega }}\sin \lambda t-m\left( x+x_e\right) \nonumber \\{} & {} \quad {{\overline{\Omega }}\lambda \cos \lambda t}+m\left( y+y_e\right) {\overline{\Omega }}^2\sin ^2\lambda t. \end{aligned}$$
(65)

Using the variables, \(x^*=\frac{x}{l_0}\), \(y^*=\frac{y}{l_0}\), \(t^*=\frac{t}{t_0}=\omega t\), and parameters \(x_e^*=\frac{x_e}{l_0}\), \(y_e^*=\frac{y_e}{l_0}\), \(\omega =\sqrt{\frac{k_x}{m}}\), \(\omega _{yx}=\sqrt{\frac{k_y}{k_x}}\), \(\zeta ^*=\frac{c}{2m\omega }\), \(\Omega ^*=\frac{{\overline{\Omega }}}{\omega }\), \(\lambda ^*=\frac{\lambda }{\omega }\), Eqs.(64) and (65) can be expressed as

$$\begin{aligned}{} & {} \begin{aligned}&\ddot{x^*}+\zeta ^*\dot{x^*}+x^*=2\dot{y^*}{\Omega ^*}\sin \lambda ^* t^*\\&\quad +\left( y^*+y^*_e\right) {{\Omega ^*}\lambda ^* \cos \lambda ^* t^*}\\&\quad +\left( x^*+x^*_e\right) {\Omega ^*}^2\sin ^2\lambda ^* t^* \end{aligned} \end{aligned}$$
(66)
$$\begin{aligned}{} & {} \begin{aligned}&\ddot{y^*}+\zeta ^*\dot{y^*}+\omega _{yx}^{*2}y^*=-2{\dot{x^* }}{\Omega ^*}\sin \lambda ^*t^*\\&\quad -\left( x^*+x^*_e\right) {{\Omega ^*}\lambda ^*\cos \lambda ^* t^*}\\&\quad +\left( y^*+y^*_e\right) {\Omega ^*}^2\sin ^2\lambda ^* t^* \end{aligned} \end{aligned}$$
(67)

where \(\dot{\left( \bullet \right) }\) denotes the differentiation with respect to non-dimensional time, \(t^*\). The equations of motion (Eqs. 1) and (2) are obtained by omitting the ‘\(*\)’ superscripts for brevity, and expressing the \(\sin ^2 \lambda t\) in terms of \(\cos 2\lambda t\).

Appendix B: Parameter estimation

Parameters are estimated from the experimental setup as described below.

  1. 1.

    Natural frequency, \(\omega \): The cylindrical specimen is displaced slightly from its rest position. \(\omega \) is estimated experimentally from the fast Fourier transform of the response to such an initial configuration. The response obtained resembles that of Fig. 3.

  2. 2.

    Damping coefficient, \(\zeta \): The ratio of the amplitudes of decaying oscillations are used to estimate \(\zeta \). Once the amplitudes \(x_0\) and \(x_n\) of the initial and the \(n^{th}\) vibration amplitudes are obtained from a decaying response such as that of Fig. 3, \(\zeta \approxeq \frac{\delta }{2\pi }\) where \(\delta =\frac{1}{n}ln\frac{x_0}{x_n}\).

  3. 3.

    Eccentricities, \(x_e\) and \(y_e\): These are measured using a Vernier caliper.

Appendix C: Equivalence between measurements made from the fixed and the oscillating frames.

Measurements made are from the fixed (laboratory) FoR. Therefore, a coordinate transformation from the oscillating FoR to the fixed FoR is required to interpret the results. Figure 15 depicts two FoRs, a fixed frame \(X_F Q Y_F\) and a rotating frame \(X_R Q Y_R\). The vibrometer measures the displacement \(y_f\) of the flexible cylinder from the fixed FoR. The displacement \(y_f\) can be expressed as

$$\begin{aligned} y_f=x_r\sin \theta +y_r\cos \theta . \end{aligned}$$
(68)
Fig. 15
figure 15

Schematic depicting the transformation from a rotating to a stationary frame of reference

If the angular displacement \(\theta \) is small, \(y_f\approxeq \left( x_r\theta +y_r\right) \approxeq y_r\). This means that for small values of \(\theta \), the observations (\(x_f\) and \(y_f\)) made from the fixed FoR and those made from the moving FoR (\(x_r\) and \(y_r\)) are identical. For the experiments, the results presented here, \(\theta \), are of the order of \(1e-5\) radians, while the orders of magnitude of \(x_r\) and \(y_r\) are comparable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anilkumar, A., Krishna, I.R.P., Sharma, N.G. et al. Experimental and theoretical investigation of superharmonic resonances in a planar oscillator under angular base excitation. Nonlinear Dyn 111, 9059–9074 (2023). https://doi.org/10.1007/s11071-023-08336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08336-7

Keywords

Navigation