Skip to main content
Log in

Dynamics analysis of a non-smooth Filippov pest-natural enemy system with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a non-smooth Filippov system that describes the interaction of the pest and natural enemy with considering time delay, which represents the change in the growth rate of natural enemies before it is released to prey on pests. When the number of the pest is below the threshold, no control is applied; otherwise, control measures will be adopted. We discuss the stability of the equilibria and the existence of Hopf bifurcation. The results show that the Hopf bifurcation occurs when the time delay passes through some critical values. By applying the Filippov convex method, we obtain the dynamics of the sliding mode. The solutions of the system eventually tend toward the regular equilibrium, the pseudo-equilibrium or a standard periodic solution. Numerical simulations show that time delay plays an important role in local and global sliding bifurcations. We can obtain boundary focus bifurcations from boundary node bifurcations by varying time delay. Furthermore, touching, buckling and crossing bifurcations can be obtained frequently by increasing time delay. The results can provide some insights in pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. Others are not applicable.

References

  1. Flint, M.: Integrated pest management for walnuts. In: University of California Statewide Integrated Pest Management Project, 2nd edn., p. 3270. University of California, Oakland, CA (1987)

  2. Lenteren, J.: Success in biological control of arthropods by augmentation of natural enemies. In: Measures of Success in Biological Control. Springer, Dordrecht (2000)

  3. Johan, A.: A conceptual framework for integrated pest management. Trends Plant Sci. 22(9), 759–769 (2017)

    Article  Google Scholar 

  4. Lenteren, J., Woets, J.: Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33, 239–250 (1988)

    Article  Google Scholar 

  5. Albajes, R., Madeira, F.: Integrated pest management. In: Encyclopedia of Sustainability Science and Technology, Springer, New York, pp. 1–36 (2018)

  6. Arafa, A., Hamdallah, S., Tang, S., Xu, Y., Mahmoud, G.: Dynamics analysis of a filippov pest control model with time delay. Commun. Nonlinear Sci. Numer. Simul. 101(14), 105865 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tang, S., Zhang, X.: Existence of multiple sliding segments and bifurcation analysis of filippov prey-predator model. Appl. Math. Comput. 239, 265–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiao, X., Li, X., Yang, Y.: Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay. Chaos. Soliton. Fract. 162, 112436 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiao, X., Yang, Y.: Rich dynamics of a Filippov plant disease model with time delay. Commun. Nonlinear Sci. Numer. Simul. 114, 106642 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, W., Tan, X., Tosato, M., Liu, X.: Threshold control strategy for a non-smooth Filippov ecosystem with group defense. Appl. Math. Comput. 362, 124532 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, H., Wang, X., Tang, S.: Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate. Math Biosci. Eng. 16(6), 7327–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mukerji, G., Ciancio, A.: Mycorrhizae In The Integrated Pest And Disease Management,in: General Concepts in Integrated Pest and Disease Management. Springer, Netherlands, pp. 245–266 (2007)

  13. Stenberg, J.: A conceptual framework for integrated pest management. Trends Plant Sci. 22(9), 759–69 (2017)

    Article  Google Scholar 

  14. Pedigo, L., Hutchins, S., Higley, L.: Economic injury levels in theory and practice. Annu. Rev. Entomol. 31, 341–368 (1986)

    Article  Google Scholar 

  15. Higley, L., Boethel, D.: Handbook of soybean insect pests. Entomol. Soc. Am. (1994)

  16. Tang, S., Tang, G., Qin, W.: Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy. Int. J. Bifurcat. Chaos. 24, 1450122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, S., Liang, J., Xiao, Y., Cheke, R.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM J. Appl. Math. 72(4), 1061–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, Y., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurcat. Chaos 13(08), 2157–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arafa, A., Xu, Y., Mahmoud, G.: Chaos suppression via integrative time delay control. Int. J. Bifurcation Chaos 30(14), 2050208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, Y., He, G., Liu, Z., Zhong, L., Yang, X., Stanley, H., Tu, Z.: The impact of memory effect on resonance behavior in a fractional oscillator with small time delay. Phys. A 563, 125383 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahmoud, G., Arafa, A., Mahmoud, E.: Bifurcations and chaos of time delay Lorenz system with dimension \(2n+1\). Eur. Phys. J. Plus. 132(11), 461 (2017)

  22. Mahmoud, G., Arafa, A., Abed-Elhameed, T., Mahmoud, E.: Chaos control of integer and fractional orders of chaotic Burk-Shaw system using time delayed feedback control. Chaos. Soliton. Fract. 104, 680–692 (2017)

    Article  MATH  Google Scholar 

  23. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life sciences, vol. 57. Springer, New York (2011)

    MATH  Google Scholar 

  24. Hu, D., Li, Y., Liu, M., Bai, Y.: Stability and Hopf bifurcation for a delayed predatorCprey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn. 99(4), 3323–50 (2020)

    Article  MATH  Google Scholar 

  25. Wang, X., Wang, Z., Huang, X., Li, Y.: Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions. Int. J. Bifurc. Chaos 28(14), 1850180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, D., Li, Y., Liu, M., Bai, Y.: Stability and Hopf bifurcation for a delayed predatorCprey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn. 99(4), 3323–50 (2020)

    Article  MATH  Google Scholar 

  27. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Eqn. 247, 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nindjin, A., Aziz-Alaoui, M.: Persistence and global stability in a delayed Leslie-Gower type three species food chain. J. Math. Anal. Appl. 340, 340–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 45, 5–60 (1965)

    Article  Google Scholar 

  30. Wei, J., Zhang, C.: Stability analysis in a first-order complex differential equations with delay. Nonlinear Anal. 59(5), 657–71 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Shen, T.: Generalized Filippov solution in stability analysis and stabilization of piecewise continuous time-delay systems. IFAC Proc. 45(14), 19–24 (2012)

    Article  Google Scholar 

  32. Di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P., Nordmark, A., Tost, G., Piiroinen, P.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50(4), 629–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Di Bernardo, M., Kowalczyk, P., Nordmark, A.: Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Phys. D 170(3–4), 175–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Yang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, Y. Dynamics analysis of a non-smooth Filippov pest-natural enemy system with time delay. Nonlinear Dyn 111, 9681–9698 (2023). https://doi.org/10.1007/s11071-023-08332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08332-x

Keywords

Navigation