Skip to main content
Log in

Dynamics and bifurcation analysis of a delay non-smooth Filippov Leslie–Gower prey–predator model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we proposed a Filippov prey–predator model with time delay considering threshold policy control of integrated pest management. The study aims to address how the threshold and time delay influence the dynamics of the model. To do this, the existence and the stability of the equilibria of the subsystems have been explored, and then, we apply Filippov convex method to investigate the sliding domain and sliding mode dynamics. Furthermore, the complex dynamics including stability of equilibrium, sliding dynamics and various bifurcation phenomena with respect to time delay and economic threshold have been investigated in more detail. The system will display types of local (boundary node/focus bifurcation) and global bifurcations (touching, sliding switching and crossing bifurcations) if the time delay crosses some critical values, such that the pest management is challenged for the number of pests will exceed the given tolerant value. These results show how crucial in the pest control to consider time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. Others are not applicable.

References

  1. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928)

    Article  Google Scholar 

  2. Lotka, A.: Elements of Physical Biology. William & Wilkins Companies, Philadelphia (1925)

  3. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Onana, M., Mewoli, B., Tewa, J.: Hopf bifurcation analysis in a delayed Leslie–Gower predator-prey model incorporating additional food for predators, refuge and threshold harvesting of preys. Nonlinear Dyn. 100(3), 3007–3028 (2020)

    Article  MATH  Google Scholar 

  5. Yuan, R., Jiang, W., Wang, Y.: Saddle-node-Hopf bifurcation in a modified Leslie–Gower predator-prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422(2), 1072–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system. Math. Anal. Appl. 301, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qin, C., Du, J., Hui, Y.: Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator. Aims Math. 7(5), 7403–7418 (2022)

    Article  MathSciNet  Google Scholar 

  8. Leslie, P.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tripathi, J., Abbas, S.: Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls. Nonlinear Dyn. 86, 337–351 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tian, Y., Weng, P.: Asymptotic stability of diffusive predatorCprey model with modified Leslie–Gower and Holling-type II schemes and nonlocal time delays. Imaging J. Math. Control I. 31(1), 1–14 (2014)

    Article  MATH  Google Scholar 

  11. Arafa, A., Hamdallah, S., Tang, S., Xu, Y., Mahmoud, G.: Dynamics analysis of a Filippov pest control model with time delay. Commun. Nonlinear Sci. Numer. Simul. 101(14), 105865 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiao, X., Li, X., Yang, Y.: Dynamics and bifurcations of a Filippov Leslie–Gower predator-prey model with group defense and time delay. Chaos Soliton Fract. 162, 112436 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiao, X., Yang, Y.: Rich dynamics of a Filippov plant disease model with time delay. Commun. Nonlinear Sci. 114, 106642 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tang, S., Xiao, Y., Cheke, R.: Dynamical analysis of plant disease models with cultural control strategies and economic thresholds. Math. Comput. Simul. 80(5), 894–921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tian, Y., Tang, S., Cheke, R.: Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases. Math. Model. Anal. 24(1), 134–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dhawan, A., Singh, S., Kumar, S.: Integrated pest management (IPM) helps reduce pesticide load in cotton. J. Agric. Sci. Tech-Iran. 11(5), 599–611 (2009)

    Google Scholar 

  17. Qin, W., Tan, X., Shi, X.: Dynamics and bifurcation analysis of a Filippov PredatorCPrey ecosystem in a seasonally fluctuating environment. Int. J. Bifurc. Chaos. 29(2), 1950020 (2019)

    Article  MATH  Google Scholar 

  18. Tian, Y., Tang, S., Cheke, R.: Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases. Math. Model. Anal. 24(1), 134–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, W., Xiao, Y., Cheke, R.: A threshold policy to interrupt transmission of West Nile Virus to birds. App. Math. Model. 40(19–20), 8794–8809 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Xiao, Y.: Global dynamics for a Filippov epidemic system with imperfect vaccination. Nonlinear Anal.-Hybrid Syst. 38, 100932 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, H., Yang, Y.: Dynamics analysis of a non-smooth Filippov pest-natural enemy system with time delay. Nonlinear Dyn. 111, 9681–9698 (2023)

    Article  Google Scholar 

  22. Hamdallah, S., Arafa, A., Tang, S., Xu, Y.: Complex dynamics of a Filippov three-species food chain model. Int. J. Bifurc. Chaos. 31(05), 2150074 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamdallah, S., Tang, S.: Stability and bifurcation analysis of Filippov food chain system with food chain control strategy. Discrete Contin. Dyn.-B 25(5), 1631–1647 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Mu, R., Wei, A., Yang, Y.: Global dynamics and sliding motion in A(H7N9) epidemic models with limited resources and Filippov control. J. Math. Anal. Appl. 477(2), 1296–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qin, W., Tan, X., Shi, X., Chen, J., Liu, X.: Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment. Int. J. Bifurc. Chaos. 29(2), 1950020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, Y., Wang, L.: Global dynamics and rich sliding motion in an avian-only Filippov system in combating avian influenza. Int. J. Bifurc. Chaos. 30(1), 2050008 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, S., Liang, J., Xiao, Y., Cheke, R.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM J. Appl. Math. 72(4), 1061–1080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qin, W., Tan, X., Shi, X., Tosoto, M., Liu, X.: Sliding dynamics and bifurcations in the extended nonsmooth Filippov ecosystem. Int. J. Bifurc. Chaos. 31(8), 2150119 (2021)

  29. Chen, X., Huang, L.: A Filippov system describing the effect of prey refuge use on a ratio-dependent predator prey model. J. Math. Anal. Appl. 428(2), 817–837 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tan, X., Qin, W., Liu, X., Yang, J., Jiang, S.: Sliding bifurcation analysis and global dynamics for a Filippov predator-prey system. J. Nonlinear Sci. Appl. 9(6), 3948–3961 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Tang, S.: Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl. Math. Comput. 239, 265–284 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Dubey, B., Kumar, A., Maiti, A.: Global stability and Hopf bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge. Commun. Nonlinear Sci. Numer. Simul. 67, 528–554 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mahmoud, G., Arafa, A., Mahmoud, E.: Bifurcations and chaos of time delay Lorenz system with dimension \(2n+1\). Eur. Phys. J. Plus. 132(11), 461 (2017)

    Article  Google Scholar 

  34. Wei, J., Zhang, C.: Stability analysis in a first-order complex differential equations with delay. Nonlinear Anal.-Theor. 59(5), 657–671 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Liao, X.: Filippov Hindmarsh–Rose neuronal model with threshold policy control. IEEE Trans. Neural Netw. Learn. 30(1), 306–311 (2019)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Yang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, Y. Dynamics and bifurcation analysis of a delay non-smooth Filippov Leslie–Gower prey–predator model. Nonlinear Dyn 111, 18541–18557 (2023). https://doi.org/10.1007/s11071-023-08789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08789-w

Keywords

Navigation