Skip to main content
Log in

Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we mainly investigate a delayed predator–prey model with stage structure for prey and Ivlev-type functional response. Four assumptions about this model are made as follows: (1) there are a single predator and a single prey population in the model; (2) the prey is divided by the age into two stage structures, immature and mature; (3) the trophic transfer from prey to predator is incomplete; (4) there are two time delays due to the time of maturation of prey and the time of gestation of predator. Some properties of equilibria for the model without delays are provided. Further, the stability of equilibria and existence of Hopf bifurcation are studied by discussing the different cases of time delays for the model with delays. We observe that delays can cause a stable equilibrium to become unstable one, even occur Hopf bifurcation when delays pass through their corresponding critical values. Meanwhile, we derive explicit formulae to determine the properties of Hopf bifurcation such as the direction of Hopf bifurcation and the stability of periodic solutions. Numerical simulations of all theoretical analyses are given for verifying our theoretical results. In the present work, we demonstrate that the validity and universality of oscillations induced by the time delays both theoretically and numerically. These results of this paper may be helpful for us to further understand the role of the critical values of time delays in stabilizing the predator–prey model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brännström, \(\mathring{{\rm A}}\)., Sumpter, D.: The role of competition and clustering in population dynamics. Proc. Biol. Sci. 272, 2065–2072 (2005)

  2. Doudoumis, V., Alam, U., Aksoy, E., et al.: Tsetse–Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J. Invertebr. Pathol. 112, S94–S103 (2013)

    Google Scholar 

  3. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten type predator harvesting. Nonlinear Anal. Real World Appl. 33, 58–82 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Hu, D., Cao, H.: Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer. Simulat. 22, 702–715 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bacaër, N.: A Short History of Mathematical Population Dynamics. Springer, New York (2011)

    MATH  Google Scholar 

  6. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993). Mathematics & Computers in Simulation

    MATH  Google Scholar 

  7. Ruan, S.: On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 4, 140–188 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Wei, F., Fu, Q.: Hopf bifurcation and stability for predator-prey systems with Beddington DeAngelis type functional response and stage structure for prey incorporating refuge. Appl. Math. Model. 40, 126–134 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Liu, J.: Bifurcation analysis of a delayed predator-prey system with stage structure and Holling-II functional response. Adv. Differ. Equ. 2015, Article ID 208 (2015)

  10. Li, M., Wang, J.: Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Cao, X., Wang, J.: Finite-time stability of a class of oscillating systems with two delays. Math. Methods Appl. Sci. 41, 4943–4954 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Sun, W.: Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation. Appl. Math. Comput. 217, 9625–9634 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Sun, W., Wang, Y., Yang, R.: \(L_2\) disturbance attenuation for a class of time delay Hamiltonian systems. J. Sys. Sci. Complex. 24, 672–682 (2011)

    MATH  Google Scholar 

  14. Li, Y., Sun, Y., Meng, F.: New criteria for exponential stability of switched time varying systems with delays and nonlinear disturbances. Nonlinear Anal. Hybrid Syst. 26, 284–291 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Guo, Y.: Exponential stability analysis of traveling waves solutions for nonlinear delayed cellular neural networks. Dyn. Syst. Int. J. 32, 490–503 (2017)

    MATH  Google Scholar 

  16. Li, L., Meng, F., Ju, P.: Some new integral inequalities and their applications in studying the stability of nonlinear integro differential equations with time delay. J. Math. Anal. Appl. 377, 853–862 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Bai, Y., Li, Y.: Stability and Hopf bifurcation for a stage-structured predator-prey model incorporating refuge for prey and additional food for predator. Adv. Differ. Equ. 2019, 42 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Han, M., Xu, B., Tian, H., Bai, Y.: On the number of periodic solutions of delay differential equations. Int. J. Bifurcat. Chaos 28, Article ID 1850051 (2018)

  19. Dubey, B., Kumar, A., Maiti, A.: Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge. Commun. Nonlinear Sci. Numer. Simul. 67, 528–554 (2019)

    MathSciNet  Google Scholar 

  20. Huang, C., Cao, J.: Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system. Sci. China Technol. Sci. 62, 298–307 (2019)

    Google Scholar 

  21. Wang, C., Li, N., Zhou, Y.: On a multi-delay Lotka–Volterra predator-prey model with feedback controls and prey diffusion. Acta Math. Sci. 39, 429–448 (2019)

    MathSciNet  Google Scholar 

  22. Song, Y., Li, Z., Du, Y.: Stability and Hopf bifurcation of a ratio-dependent predator-prey model with time delay and stage structure. Electron. J. Qual. Theory Differ. Equ. 99, 1–23 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965)

    Google Scholar 

  24. Baek, H.: Complex dynamics of a discrete-time predator-prey system with Ivlev functional response. Math. Prob. Eng. 2018, Article ID 8635937 (2018)

  25. Xu, S.: Dynamics of a general prey-predator model with prey-stage structure and diffusive effects. Comput. Math. Appl. 68, 405–423 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Sun, X., Yuan, R., Wang, L.: Bifurcations in a diffusive predator-prey model with Beddington–Deangelis functional response and nonselective harvesting. J. Nonlinear Sci. 29, 287–318 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Kumari, N., Mohan, N.: Cross diffusion induced turing patterns in a tritrophic food chain model with Crowley–Martin functional response. Mathematics 7, 229 (2019)

    Google Scholar 

  28. Chinnathambi, R., Rihan, F.: Stability of fractional-order prey-predator system with time-delay and Monod Haldane functional response. Nonlinear Dyn. 92, 1–12 (2018)

    MATH  Google Scholar 

  29. Ivlev, V.S.: Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven (1961)

    Google Scholar 

  30. Huang, Y., Weng, P.: Periodic traveling wave train and point-to-periodic traveling wave for a diffusive predator-prey system with Ivlev-type functional response. J. Math. Anal. Appl. 417, 376–393 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Kooij, R.E., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Li, L., Wang, W.: Dynamics of a Ivlev-type predator-prey system with constant rate harvesting. Chaos Solitons Fractals. 41, 2139–2153 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Liu, W., Jiang, Y., Chen, Y.: Dynamic properties of a delayed predator prey system with Ivlev-type functional response. Nonlinear Dyn. 84, 743–754 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Owolabi, K., Atangana, A.: Spatiotemporal dynamics of fractional predator-prey system with stage structure for the predator. Int. J. Appl. Comput. Math. (2017). https://doi.org/10.1007/s40819-017-0389-2

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z., Luo, J.: Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator. Nonlinear Anal. Real World Appl. 11, 4109–4120 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Zhao, H., Wang, L.: Stability and Hopf bifurcation in a reaction–diffusion predator-prey system with interval biological parameters and stage structure. Nonlinear Dyn. 79, 1797–1816 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Aiello, W., Freedman, H.: A time-delay model of single-growth with stage structure. Math. Biosci. 101, 139–153 (1990)

    MathSciNet  MATH  Google Scholar 

  38. Xia, J., Wang, J., Cui, J., et al.: Development of a stage-structured process-based predator-prey model to analyse biological control of cotton aphid, Aphis gossypii, by the sevenspot ladybeetle, Coccinella septempunctata, in cotton. Ecol. Complex. 33, 11–30 (2018)

    Google Scholar 

  39. Huang, G., Dong, Y.: A note on global properties for a stage structured predator prey model with mutual interference. Adv. Differ. Equ. 2018, Article ID 308 (2018)

  40. Mortoja, S., Panja, P., Mondal, S.: Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior. Inf. Med. Unlocked 10, 50–57 (2018)

    Google Scholar 

  41. Jia, J., Wei, X.: On the stability and Hopf bifurcation of a predator-prey model. Adv. Differ. Equ. 2016, Article ID 86 (2016)

  42. Xu, R.: Global dynamics of a predator-prey model with time delay and stage structure for the prey. Nonlinear Anal. Real World Appl. 12, 2151–2162 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, C., Liu, L., Yan, P., Zhang, L.: Stability and Hopf bifurcation analysis of a predator-prey model with time delayed incomplete trophic transfer. Acta Math. Appl. Sin. Eng. Ser. 31, 235–246 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X., Peng, M., Liu, X.: Stability and Hopf bifurcation analysis of a ratio-dependent predator-prey model with two delays and Holling type III function response. Appl. Math. Comput. 268, 496–508 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Hu, D., Cao, H.: Stability and Hopf bifurcation analysis in Hindmarsh–Rose neuron model with multiple time delays. Int. J. Bifurcat. Chaos 11, 1650187 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Song, Y., Wei, J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solitons Fractals 22, 75–91 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  48. May, R.: Limit cycles in predator-prey communities. Science 177, 900–902 (1972)

    Google Scholar 

  49. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257, 1721–1752 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Nos. 2014M551873 and 2019M652349), Postdoctoral Science Foundation of Shandong Province of China (No. 201401008) and Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province of China (No. ZR2018BF018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhen Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Appendix, we will provide some details of Theorems 2.12.3.

Proof of Theorem 2.1

Let

$$\begin{aligned} \begin{array}{l} L_{1}:\, y = g_{1}(x_{2})=\frac{(ab - k d_{2})x_{2}-b_{1}kx_{2}^{2}}{k(1-e^{-\alpha x_{2}})},\\ L_{2}:\, y = g_{2}(x_{2})=\frac{1-e^{-\beta x_{2}}-d}{\delta }. \end{array} \end{aligned}$$

Setting \(z=\alpha x_{2},~m=\alpha \left( \frac{ab-kd_{2}}{kb_{1}}\right) \), we obtain

$$\begin{aligned} g_{1}(x_{2})= & {} g_{1}\left( \frac{z}{\alpha }\right) = \frac{(ab-d_{2}k)\frac{z}{\alpha }-b_{1}k(\frac{z}{\alpha })^{2}}{k(1-e^{-z})} \\= & {} \frac{b_{1}}{\alpha ^{2}}\left( \frac{mz-z^{2}}{1-e^{-z}}\right) , \end{aligned}$$

therefore,

$$\begin{aligned} \begin{aligned}&\frac{\mathrm{d}g_{1}(x_2)}{\mathrm{d}x_{2}} = \frac{\mathrm{d}g_{1}}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}x_{2}}\\&\quad =\alpha \frac{b_{1}}{\alpha ^{2}}\frac{(m-2z)(1-e^{-z}) -(mz-z^{2})e^{-z}}{(1-e^{-z})^{2}}\\&\quad = \frac{b_{1}}{\alpha (1-e^{-z})^{2}}\left[ m-2z+e^{-z}(2z-mz+z^{2}-m)\right] \\&\quad = \frac{b_{1}e^{-z}}{\alpha (1-e^{-z})^{2}}\left[ (m-2z)e^{z}-m+z^{2}+(2-m)z\right] . \end{aligned} \end{aligned}$$

Denoting

$$\begin{aligned} \Phi (z)=(m-2z)e^{z}-m+z^{2}+(2-m)z, \end{aligned}$$

we have

$$\begin{aligned} \lim _{z\rightarrow 0^{+}}\Phi (z) = 0,~\Phi (m) = m\left( 1 - e^{m}\right) < 0, \end{aligned}$$

and

$$\begin{aligned} \frac{\mathrm{d}\Phi }{\mathrm{d}z}=(m-2z-2)(e^{z}-1). \end{aligned}$$
(A.1)

Therefore, when \(m\in (0,2]\), \(\Phi (z) < 0\) for \(z\in (0,+\infty )\). When \(m\in (2,+\infty )\), then there exists a \(z_0\in \left( \frac{1}{2}(m-2),m\right) \) such that \(\Phi (z) < 0\) for \(z \in (z_0,+\infty )\) and \(\Phi (z) > 0\) for \(z \in (0,z_0)\).

Hence, when \(m\in (0,2]\),

$$\begin{aligned} \begin{array}{l} \dfrac{\mathrm{d}g_1(x_2)}{\mathrm{d}x_2} < 0,\quad \text {for}~x_2 \in \left( 0,+\infty \right) , \end{array} \end{aligned}$$

that is, \(y=g_{1}(x_{2})\) is an decreasing function on \(\left( 0, +\infty \right) \).

When \(m\in (2,+\infty )\),

$$\begin{aligned} \begin{array}{l} \dfrac{\mathrm{d}g_1(x_2)}{\mathrm{d}x_2} > 0,\quad \text {for}~x_2\in (0,\frac{z_0}{\alpha }),\\ \dfrac{\mathrm{d}g_1(x_2)}{\mathrm{d}x_2} < 0,\quad \text {for}~x_2\in (\frac{z_0}{\alpha },+\infty ). \end{array} \end{aligned}$$

that is, \(y=g_{1}(x_{2})\) is an increasing function on \((0,\frac{z_0}{\alpha })\) and is an decreasing function on \((\frac{z_0}{\alpha }, +\infty )\). From \(\frac{\mathrm{d}g_{2}(x_{2})}{\mathrm{d}x_{2}}=\frac{\beta e^{-\beta x_{2}}}{\delta }>0\) we have that \(y=g_{2}(x_{2})\) is an increasing function on \([0,+\infty )\). Furthermore,

$$\begin{aligned} g_{1}\left( \frac{ab - kd_{2}}{kb_{1}}\right) =0,\quad g_{2}\left( -\, \frac{1}{\beta }\ln (1-d)\right) =0. \end{aligned}$$

Notice that \(\displaystyle \lim _{x_2\rightarrow 0^{+}}g_1(x_2) = \frac{ab - kd_2}{\alpha k}>0\) and \(\displaystyle \lim _{x_2\rightarrow 0^{+}}g_2(x_2) = -\frac{d}{\delta } < 0\). If \((C_{3})\) hold, there exists a unique intersection \(\left( x^{*}_{2},y^{*}\right) \) of line \(L_{1}\) and line \(L_{2}\). From the above discussion, we obtain a unique positive equilibrium \(E_{2}(x^{*}_{1},x^{*}_{2},y^{*})\) with

$$\begin{aligned} x^{*}_{1}= & {} \frac{ax^{*}_{2}}{k},\,\,y^{*}=\frac{1-d-e^{-\beta x^{*}_{2}}}{\delta },\,\, 0 \\&<-\, \frac{1}{\beta }\ln (1-d)<x^{*}_{2}<\frac{ab-kd_{2}}{b_{1}k}. \end{aligned}$$

Proof of Theorem 2.2

The Jacobian matrix of (3) at the equilibrium \((x_{1},x_{2},y)\) is

$$\begin{aligned}&J(x_1, x_2, y)\nonumber \\&\quad \!\! = \begin{pmatrix} -k &{}\quad a &{}\quad 0\\ b &{}\quad -2b_1x_2 - d_2 - \alpha y e^{-\alpha x_2} &{}\quad -(1 - e^{-\alpha x_2})\\ 0 &{}\quad \beta ye^{-\beta x_2} &{}\quad 1 - d - 2\delta y - e^{-\beta x_2} \end{pmatrix}.\nonumber \\ \end{aligned}$$
(A.2)

(i) The eigenvalues \(\lambda _1\), \(\lambda _2\) and \(\lambda _3\) associated with the trivial equilibrium \(E_0(0,0,0)\) are given by \(\lambda _1 = -d < 0\), \(\lambda _{2,3} = \frac{-(k + d_2)\pm \sqrt{(k+d_2)^2 - 4(kd_2-ab)}}{2} = \frac{-(k + d_2)\pm \sqrt{(k - d_2)^2 + 4ab}}{2}\). Hence, if \((C_1)\) holds, then \(\lambda _2> 0\) and \(\lambda _3<0\) imply that \(E_0(0,0,0)\) is a saddle point. \(E_0(0,0,0)\) is unstable. If \((C_2)\) holds, then \(\lambda _{2} < 0\) and \(\lambda _3 < 0\) imply that \(E_0(0,0,0)\) is locally asymptotically stable.

(ii) If \((C_{3})\) holds, one of the eigenvalues associated with the equilibrium \(E_1({\widehat{x}}_{1},{\widehat{x}}_{2},0)\) is given by \(\lambda =1-d-e^{-\beta {\widehat{x}}_{2}}>0.\) Therefore, \(E_{1}({\widehat{x}}_{1},{\widehat{x}}_{2},0)\) is unstable. \(\square \)

Proof of Theorem 2.3

From (A.2), we have the following characteristic equation of \(J(x^{*}_{1},x^{*}_{2},y^{*})\)

$$\begin{aligned}&\lambda ^{3} + \left( 2b_1x^{*}_2 + d_2 + \alpha e^{-\alpha x^{*}_2}y^{*} \right. \nonumber \\&\left. \quad -\, 1 + d + 2\delta y^{*} + e^{-\beta x^{*}_2} + k\right) \lambda ^{2}\nonumber \\&\quad +\, \left[ \left( 2b_1x^{*}_2 + d_2 + \alpha e^{-\alpha x^{*}_2}y^{*}\right) \left( d - 1 + 2\delta y^{*}+e^{-\beta x^{*}_2}\right) \right. \nonumber \\&\quad \left. +\, \beta e^{-\beta x^{*}_2}y^{*}\left( 1-e^{-\alpha x^{*}_2}\right) - ab\right. \nonumber \\&\quad +\, \left. 2b_1kx^{*}_2 + d_2 k + \alpha e^{-\alpha x^{*}_2}y^{*}k \right. \nonumber \\&\quad \left. -\, k + e^{-\beta x^{*}_2}k + 2\delta y^{*}k + dk\right] \lambda \nonumber \\&\quad +\, \left[ k\left( 2b_1x^{*}_2 + d_2 + \alpha e^{-\alpha x^{*}_2}y^{*}\right) \left( d - 1 + 2\delta y^{*} + e^{-\beta x^{*}_2}\right) \right. \nonumber \\&\quad +\, \left. k\beta \left( 1-e^{-\alpha x^{*}_2}\right) e^{-\beta x^{*}_2}y^{*} \right. \nonumber \\&\left. \quad -\, ab\left( d - 1 + 2\delta y^{*} + e^{-\beta x^{*}_2}\right) \right] =0. \end{aligned}$$
(A.3)

Since \(m_{1} \triangleq d - 1 + 2\delta y^{*} + e^{-\beta x^{*}_{2}} = \delta y^{*}>0,\)\(m_{2} \triangleq 2b_{1}x^{*}_{2} + d_{2} + \alpha e^{-\alpha x^{*}_{2}}y^{*}>0,\)\(m_{3} \triangleq \beta e^{-\beta x^{*}_{2}}y^{*}(1-e^{-\alpha x^{*}_{2}})>0,\) then (A.3) becomes the following equation

$$\begin{aligned}&\lambda ^{3} + \left( m_1 + m_2 + k\right) \lambda ^{2} + \left[ m_1m_2 + m_3 - ab \right. \\&\left. \quad +\, k\left( m_1 + m_2\right) \right] \lambda + \left( km_1m_2 + km_3 - abm_1\right) =0. \end{aligned}$$

Let

$$\begin{aligned} A_{1}= & {} m_{1}+m_{2}+k,~~ \\ A_{2}= & {} m_{1}m_{2}+m_{3}-ab+k(m_{1}+m_{2}),~~ \\ A_{3}= & {} km_{1}m_{2}+km_{3}-abm_{1}, \end{aligned}$$

obviously, \(A_{1}>0\) and

$$\begin{aligned}&A_{1}A_{2}-A_{3} =(m_{1}+m_{2}+k)\left[ m_{1}m_{2}+m_{3}-ab\right. \\&\left. \qquad +\, k(m_{1}+m_{2})\right] -(km_{1}m_{2}+km_{3}-abm_{1})\\&\quad =m^{2}_{1}m_{2}+m_{1}m^{2}_{2}+2km_{1}m_{2}\\&\qquad +\, km^{2}_{1}+(m_{1}+m_{2})m_{3}+k^{2}m_{1} \\&\qquad +\, (k+m_{2})(2b_{1}kx^{*}_{2}+kd_{2}+k\alpha e^{-\alpha x^{*}_{2}}y^{*}-ab). \end{aligned}$$

From the proof of Theorem 2.1, if \(m\in (0,2]\), \(x_2^{*}\in (0,+\infty )\) or \(m\in (2,+\infty )\), \(x_2^{*}\in \left( \frac{z_0}{\alpha },+\infty \right) \), then we have

$$\begin{aligned} \begin{array}{l} y^{*} = g_1\left( x^{*}_2\right) = \dfrac{(ab-d_2k)x^{*}_2 - b_1k(x^{*}_2)^2}{k(1-e^{-\alpha x^{*}_2})}>0,\\ \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \dfrac{\mathrm{d}g_1(x^{*}_2)}{\mathrm{d}x_2}&= \dfrac{k\left( ab-d_{2}k-2b_{1}kx^{*}_2\right) \left( 1-e^{-\alpha x^{*}_2}\right) - \alpha ke^{-\alpha x^{*}_2}x^{*}_2\left( ab - d_2k - b_1kx^{*}_2\right) }{k^2\left( 1-e^{-\alpha x^{*}_2}\right) ^2}\\&= \dfrac{\left( ab-d_2k-2b_1kx^{*}_2\right) \left( 1 - e^{-\alpha x^{*}_2}\right) - \alpha e^{-\alpha x^{*}_2}x^{*}_2\left( ab - d_2k - b_1kx^{*}_2\right) }{k\left( 1 - e^{-\alpha x^{*}_2}\right) ^2} < 0. \end{aligned} \end{aligned}$$

Hence, we have

$$\begin{aligned}&\alpha e^{-\alpha x^{*}_{2}}x^{*}_{2}(ab-d_{2}k-b_{1}kx^{*}_{2})\\&\quad >(ab-d_{2}k-2b_{1}kx^{*}_{2})(1-e^{-\alpha x^{*}_{2}}), \end{aligned}$$

then

$$\begin{aligned}&2b_1kx^{*}_2 + kd_2 + k\alpha e^{-\alpha x^{*}_2}y^{*} - ab= 2b_1kx^{*}_2 + kd_2 -ab + k\alpha e^{-\alpha x^{*}_2}\frac{\left( ab - k d_2\right) x^{*}_2 - kb_1\left( x^{*}_2\right) ^2}{k\left( 1 - e^{-\alpha x^{*}_2}\right) }\\&\quad = \frac{(1-e^{-\alpha x^{*}_{2}})(2b_{1}kx^{*}_{2}+kd_{2}-ab)+\alpha e^{-\alpha x^{*}_2}x^{*}_2\left[ \left( ab - kd_2\right) - kb_1x^{*}_2\right] }{\left( 1 - e^{-\alpha x^{*}_2}\right) }\\&\quad = \frac{\alpha e^{-\alpha x^{*}_2}x^{*}_2\left[ \left( ab - kd_2\right) - kb_1x^{*}_2\right] - \left( 1 - e^{-\alpha x^{*}_2}\right) \left( ab - kd_2 - 2kb_1x^{*}_{2}\right) }{\left( 1-e^{-\alpha x^{*}_2}\right) } >0, \end{aligned}$$

therefore

$$\begin{aligned} A_1A_2 - A_3 > 0. \end{aligned}$$

From

$$\begin{aligned} \begin{aligned} A_2&= m_1m_2 + m_3 - ab + k\left( m_1 + m_2\right) \\&= \left( km_2 - ab\right) + m_1m_2 + m_3 + km_1 \\&= (2b_{1}kx^{*}_{2}+kd_{2}+k\alpha e^{-\alpha x^{*}_{2}}y^{*}-ab)\\&\quad +m_{1}m_{2}+m_{3}+km_{1},\\ A_3&= km_1m_2 + km_3 - abm_1 = \left( km_2 - ab\right) m_1 + km_3\\&= \left( 2kb_1x^{*}_2 + kd_2 + k\alpha e^{-\alpha x^{*}_2}y^{*} - ab\right) m_1 + km_3, \end{aligned} \end{aligned}$$

and the above discussion, we get \(A_1>0,~A_2>0,~A_3>0\) and \(A_1A_2 - A_3>0\). By the Routh–Hurwitz criterion, we see that the positive equilibrium \(E_2(x^{*}_1,x^{*}_2,y^{*})\) is locally asymptotically stable. \(\square \)

Appendix B

$$\begin{aligned}&\langle q^*(s),q(\theta )\rangle \\&\quad = {\overline{q}}^*(0)\cdot q(0) - \int _{\theta = -1}^0\int _{\xi =0}^\theta {\overline{q}}^{*T}(\xi -\theta )\mathrm{d}\eta (\theta )q(\xi )\mathrm{d}\xi \\&\quad = {\overline{P}}\left( {\overline{v}}_1^*,{\overline{v}}_2^*,{\overline{v}}_3^*\right) (v_1,v_2,v_3)^T \\&\quad - \int _{\theta = -1}^0\int _{\xi =0}^\theta {\overline{P}}({\overline{v}}_1^*,{\overline{v}}_2^*,{\overline{v}}_3^*)e^{-\mathrm{i}\nu _{40}\tau _{40}(\xi -\theta )}\mathrm{d}\eta (\theta )\\&\qquad (v_1,v_2,v_3)^Te^{\mathrm{i}\nu _{40}\tau _{40}\xi }\mathrm{d}\xi \\&= {\overline{P}}\left( {\overline{v}}_1^*,{\overline{v}}_2^*,{\overline{v}}_3^*\right) (v_1,v_2,v_3)^T \\&\quad - {\overline{q}}^{*T}(0)\int _{\theta = -1}^0\int _{\xi =0}^\theta e^{\mathrm{i}\nu _{40}\tau _{40}\theta }\mathrm{d}\xi \mathrm{d}\eta (\theta )q(0)\\&= {\overline{P}}\left( {\overline{v}}_1^*,{\overline{v}}_2^*,{\overline{v}}_3^*\right) (v_1,v_2,v_3)^T \\&\quad - {\overline{q}}^{*T}(0)\int _{\theta = -1}^0 \xi e^{\mathrm{i}\nu _{40}\tau _{40}\theta }\bigg |_{\xi = 0}^{\theta }\mathrm{d}\eta (\theta )q(0)\\&= {\overline{P}}\left( {\overline{v}}_1^*,{\overline{v}}_2^*,{\overline{v}}_3^*\right) (v_1,v_2,v_3)^T \\&\quad - {\overline{q}}^{*T}(0)\int _{\theta = -1}^0 \theta e^{\mathrm{i}\nu _{40}\tau _{40}\theta }\mathrm{d}\eta (\theta )q(0)\\&= {\overline{P}}\left( v_1{\overline{v}}_1^* + v_2{\overline{v}}_2^* + v_3{\overline{v}}_3^*\right) \\&\quad + {\overline{q}}^{*T}(0)\tau _2^* \begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \beta y^*e^{-\beta x_2^*} &{}\quad 1 - e^{-\beta x_2^*} \end{pmatrix} e^{-\mathrm{i}\nu _{40}\tau _2^*}q(0) \\&\quad + {\overline{q}}^{*T}(0)\tau _{40} \begin{pmatrix} -b &{}\quad 0 &{}\quad 0\\ b &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}v 0 \end{pmatrix} e^{-\mathrm{i}\nu _{40}\tau _{40}}q(0)\\&= {\overline{P}}\left\{ v_1{\overline{v}}_1^* + v_2{\overline{v}}_2^* + v_3{\overline{v}}_3^* + \tau _2^*e^{-\mathrm{i}\nu _{40}\tau _2^*}\right. \\&\left. \quad \times \left[ \beta y^*e^{-\beta x_2^*}v_2{\overline{v}}_3^* +(1 - e^{-\beta x_2^*})v_3{\overline{v}}_3^*\right] \right. \\&\left. \quad - b\tau _{40} e^{-\mathrm{i}\nu _{40} \tau _{40}}v_1{\overline{v}}_1^* \right\} . \end{aligned}$$
$$\begin{aligned} \begin{array}{l} {\overline{P}} = \dfrac{1}{v_1{\overline{v}}_1^* + v_2{\overline{v}}_2^* + v_3{\overline{v}}_3^* + \tau _2^*e^{-\mathrm{i}\nu _{40}\tau _2^*}\left[ \beta y^*e^{-\beta x_2^*}v_2{\overline{v}}_3^* +(1 - e^{-\beta x_2^*})v_3{\overline{v}}_3^*\right] -\, b\tau _{40} e^{-\mathrm{i}\nu _{40} \tau _{40}}v_1{\overline{v}}_1^*}. \end{array} \end{aligned}$$

Appendix C

Using the same notations as in Hassard et al. [47], we first compete the coordinates to describe the center manifold \(C_0\) at \(\mu = 0\). Let \(X_t\) be the solution of (30) when \(\mu = 0\). Define

$$\begin{aligned} z(t)= & {} \langle q^*,X_t\rangle , ~~W(t,\theta ) = X_t(\theta ) - z(t)q(\theta ) \nonumber \\&-\, {\overline{z}}(t){\overline{q}}(\theta ) = X_t(\theta ) - 2\mathrm{Re}\{z(t)q(\theta )\}. \end{aligned}$$
(C.1)

On the center manifold \(C_0\) we have \(W(t,\theta )=W(z(t),{\overline{z}}(t),\theta )\), where

$$\begin{aligned} W(z(t),{\overline{z}}(t),\theta )= & {} W_{20}(\theta )\dfrac{z^2(t)}{2} + W_{11}(\theta )z(t){\overline{z}}(t) \nonumber \\&+\, W_{02}(\theta )\dfrac{{\overline{z}}^2(t)}{2} \nonumber \\&+\, W_{30}(\theta )\dfrac{z^3(t)}{6} + \cdots , \end{aligned}$$
(C.2)

z(t) and \({\overline{z}}(t)\) are local coordinates for center manifold \(C_0\) in the directions of \(q^*\) and \({\overline{q}}^*\). Note that W is real if \(X_t\) is, we shall deal with real solutions only. For the solution \(X_t \in C_0\) of (30), since \(\mu = 0\), we have

$$\begin{aligned} {\dot{z}}(t)&= \langle q^*,{\dot{X}}_t\rangle = \langle q^*,A(0)X_t + R(0)X_t\rangle \\&= \langle q^*,A(0)X_t\rangle + \langle q^*,R(0)X_t\rangle \\&= \langle A^*(0)q^*,X_t\rangle + {\overline{q}}^*(0)\cdot F(0,X_t)\\&=\mathrm{i}\nu _{40} \tau _{10}'z(t) + {\overline{q}}^*(0)\cdot F\left( 0,W(z(t),{\overline{z}}(t),0) \right. \\&\left. \quad +\, 2{{\mathrm{Re}}}\{z(t)q(0)\}\right) \\&\triangleq \mathrm{i}\nu _{40} \tau _{10}'z(t) + {\overline{q}}^{*}(0)\cdot F_0(z(t),{\overline{z}}(t)). \end{aligned}$$

We rewrite this equation as

$$\begin{aligned} {\dot{z}}(t) = \mathrm{i}\nu _{40} \tau _{40}z(t) + g(z(t),{\overline{z}}(t)), \end{aligned}$$
(C.3)

where \(g(z(t),{\overline{z}}(t)) = {\overline{q}}^*(0)\cdot F_0(z(t),{\overline{z}}(t))\), and expand \(g(z(t),{\overline{z}}(t))\) in powers of z(t) and \({\overline{z}}(t)\), that is

$$\begin{aligned} g\left( z(t),{\overline{z}}(t)\right)= & {} g_{20}\dfrac{z^2(t)}{2} + g_{11}z(t){\overline{z}}(t) + g_{02}\dfrac{{\overline{z}}^2(t)}{2} \nonumber \\&+\, g_{21}\dfrac{z^2(t){\overline{z}}(t)}{2} + \cdots . \end{aligned}$$
(C.4)

then it follows from (C.1) that

$$\begin{aligned} X_t(\theta )= & {} W(t,\theta ) + 2\mathrm{{Re}}\{z(t)q(t)\} \nonumber \\= & {} W_{20}(\theta )\dfrac{z^2(t)}{2} + W_{11}(\theta )z(t){\overline{z}}(t)\nonumber \\&+ W_{02}(\theta )\dfrac{{\overline{z}}^2(t)}{2} + (v_1,v_2,v_3)^{T}e^{\mathrm{i}\nu _{40} \tau _{40}\theta }z(t)\nonumber \\&+ ({\overline{v}}_1,{\overline{v}}_2,{\overline{v}}_3)^{T}e^{-\mathrm{i}\nu _{40} \tau _{40}\theta }{\overline{z}}(t) + \cdots . \end{aligned}$$
(C.5)

It follows together with (32) that

$$\begin{aligned}&g(z(t),{\bar{z}}(t)) = {\bar{q}}^*(0)F_0(z(t),{\overline{z}}(t))={\overline{q}}^*(0)F_0(0,X_t)\nonumber \\&= {\overline{q}}^*(0)\tau _{40} \begin{pmatrix} 0\\ -y^*\displaystyle {\sum _{i=2}^{\infty }}{\frac{1}{i!}f_1^i(x^*)\left( W^{(2)}(0)+zv_2+{\bar{z}}{\bar{v}}_2\right) ^i} +\displaystyle {\sum _{i=1}^{\infty }}f_1^i(x^*)\left( W^{(2)}(0)+zv_2+{\bar{z}}{\bar{v}}_2 \right) ^i\\ \times \left( W^{(3)}(0) +zv_3+{\bar{z}}{\bar{v}}_3 \right) -b_1\left( W^{(2)}(0)+zv_2+{\bar{z}}{\bar{v}}_2\right) ^2 -\delta \left( W^{(3)}(0)+zv_3+{\bar{z}}{\bar{v}}_3\right) ^2\\ -y^*\displaystyle {\sum _{i=2}^{\infty }}{\frac{1}{i!}f_2^i(x^*)\left( W^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) +zv_2e^{-\mathrm{i}\nu _{40}\tau _2^*}+{\bar{z}}{\bar{v}}_2e^{\mathrm{i}\nu _{40}\tau _2^*} \right) ^i} -\displaystyle {\sum _{i=1}^{\infty }}f_2^i(x^*)\left( W^{(2)}+zv_2e^{-\mathrm{i}\nu _{40}\tau _2^*} \right. \\ \displaystyle \left. +{\bar{z}}{\bar{v}}_2e^{\mathrm{i}\nu _{40}\tau _2^*}\right) ^i \left( W^{(3)}\left( \dfrac{-\tau _2^*}{\tau _{40}}\right) +zv_3e^{-\mathrm{i}\nu _{40}\tau _2^*}+{\bar{z}}{\bar{v}}_3e^{\mathrm{i}\nu _{40}\tau _2^*} \right) \end{pmatrix} \nonumber \\&={\overline{P}}\tau _{50}\left\{ v_2^*\left[ y^*\displaystyle {\sum _{i=1}^{\infty }}f_1^i(x^*)\left( W_{20}^{(2)}(0)\frac{z^2}{2}+W_{11}^{(2)}(0)z{\bar{z}} +\,W_{02}^{(2)}(0)\frac{{\bar{z}}^2}{2} +zv_2+{\bar{z}}{\bar{v}}_2 + \cdots \right) ^i\left( W_{20}^{(3)}(0)\frac{z^2}{2}+W_{11}^{(3)}(0)z{\bar{z}} \right. \right. \right. \nonumber \\&\quad \left. \left. +\,W_{02}^{(3)}(0)\frac{{\bar{z}}^2}{2}+zv_3+{\bar{z}}{\bar{v}}_3 + \cdots \right) -b_1\left( W_{20}^{(2)}(0)\frac{z^2}{2}+\, W_{11}^{(2)}(0)z{\bar{z}} +W_{02}^{(2)}(0)\frac{{\bar{z}}^2}{2}+zv_2+{\bar{z}}{\bar{v}}_2 + \cdots \right) ^2\right] \nonumber \\&\quad +\, v_3^*\left[ -\delta \left( W_{20}^{(3)}(0)\frac{z^2}{2} +W_{11}^{(3)}(0)z{\bar{z}}\right. \right. \nonumber \\&\left. \left. \quad +\, W_{02}^{(3)}(0)\frac{{\bar{z}}^2}{2}+zv_3+{\bar{z}}{\bar{v}}_3 + \cdots \right) ^2 \right. -\,y^*\displaystyle {\sum _{i=2}^{\infty }}\frac{1}{i!}f_2^i(x^*)\left( W_{20}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{z^2}{2}+W_{11}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) z{\bar{z}} \right. \nonumber \\&\left. \quad +\,W_{02}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{{\bar{z}}^2}{2}+zv_2e^{-\mathrm{i}\nu _{40}\tau _2^*}+{\bar{z}}{\bar{v}}_2e^{\mathrm{i}\nu _{40}\tau _2^*} + \cdots \right) ^i\nonumber \\&\quad -\,\displaystyle {\sum _{i=1}^{\infty }}f_2^i(x^*)\left( W_{20}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{z^2}{2}+W_{11}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) z{\bar{z}} \right. \nonumber \\&\left. \quad +\,W_{02}^{(2)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{{\bar{z}}^2}{2}+zv_2e^{-\mathrm{i}\nu _{40}\tau _2^*}+{\bar{z}}{\bar{v}}_2e^{\mathrm{i}\nu _{40}\tau _2^*} + \cdots \right) ^i \nonumber \\&\quad \left. \left. \times \left( W_{20}^{(3)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{z^2}{2}+W_{11}^{(3)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) z{\bar{z}} \right. \right. \right. \nonumber \\&\left. \left. \left. \quad +\,W_{02}^{(3)}\left( \frac{-\tau _2^*}{\tau _{40}}\right) \frac{{\bar{z}}^2}{2}+zv_3e^{-\mathrm{i}\nu _{40}\tau _2^*}+{\bar{z}}{\bar{v}}_3e^{\mathrm{i}\nu _{40}\tau _2^*} + \cdots \right) \right] \right\} . \end{aligned}$$
(C.6)

Comparing the coefficients with (C.4), we obtain

$$\begin{aligned} g_{20}= & {} 2{\overline{P}}\tau _{40}\left\{ {\bar{v}}_2^*\left( -b_1v_2^2-\alpha e^{-\alpha x_2^*}v_2v_3 +\dfrac{1}{2}\alpha ^2y^*e^{-\alpha x_2^*}v_2^2\right) \right. \nonumber \\&\left. +\,{\bar{v}}_3^*\left[ -\delta v_3^2+\beta e^{-2\mathrm{i}\nu _{40}\tau _2^*}v_2\left( -\dfrac{1}{2}\beta y^*e^{-\alpha x_2^*}v_2 \right. \right. \right. \nonumber \\&\left. \left. \left. +\, e^{-\beta x_2^*}v_3\right) \right] \right\} ,\nonumber \\ g_{11}= & {} {\overline{P}}\tau _{40}\left\{ -2\delta v_3{\bar{v}}_3{\bar{v}}_3^*-2b_1v_2{\bar{v}}_2{\bar{v}}_2^* + e^{-\alpha x_2^*}{\bar{v}}_2^* \right. \nonumber \\&\left. \quad \left( -\alpha v_2{\bar{v}}_3 - \alpha {\bar{v}}_2v_3 + \alpha ^2y^*v_2{\bar{v}}_2\right) \right. \nonumber \\&\left. +\,{\bar{v}}_3^*\left[ -\beta ^2y^*e^{-\alpha x_2^*}v_2{\bar{v}}_2 \right. \right. \nonumber \\&\left. \left. +\,e^{-\beta x_2^*}\left( \beta v_2{\bar{v}}_3+\beta {\bar{v}}_2v_3\right) \right] \right\} ,\nonumber \\ g_{02}= & {} 2{\overline{P}}\tau _{40}\left[ -\delta {\bar{v}}_3^2{\bar{v}}_3^*-b_1{\bar{v}}_2^2{\bar{v}}_2^* + \beta e^{-2\mathrm{i}\nu _{40}\tau _2^*}{\bar{v}}_2{\bar{v}}_3^*\right. \nonumber \\&\left. \left( -\,\dfrac{1}{2}\beta y^*e^{-\alpha x_2^*}{\bar{v}}_2+e^{-\beta x_2^*}{\bar{v}}_3\right) \right. \nonumber \\&\left. +\,\alpha e^{-\alpha x_2^*} {\bar{v}}_2 {\bar{v}}_2^*\left( \frac{1}{2}\alpha y^*{\bar{v}}_2 - {\bar{v}}_3\right) \right] ,\nonumber \\ g_{21}= & {} 2{\overline{P}}\tau _{40}\left\{ b_1{\bar{v}}_2^*\left( -W_{20}^{(2)}(0){\bar{v}}_2- 2W_{11}^{(2)}(0)v_2\right) \right. \nonumber \\&\left. +\,\delta {\bar{v}}_3^*\left( -W_{20}^{(3)}(0){\bar{v}}_3 - 2W_{11}^{(3)}(0)v_3\right) \right. \nonumber \\&+\,\dfrac{1}{2}\beta e^{\mathrm{i}\nu _{40}\tau _2^*}{\bar{v}}_3^*\left( -\beta y^*e^{-\alpha x_2^*}W_{20}^{(2)}\left( -\dfrac{\tau _2^*}{\nu _{40}}\right) {\bar{v}}_2\right. \nonumber \\&\left. +\, e^{-\beta x_2^*}\left( W_{20}^{(2)}\left( -\dfrac{\tau _2^*}{\nu _{40}}\right) {\bar{v}}_3+W_{20}^{(3)}\left( -\dfrac{\tau _2^*}{\nu _{40}}\right) {\bar{v}}_2\right) \right) \nonumber \\&+\, \beta e^{-\mathrm{i}\nu _{40}\tau _2^*}{\bar{v}}_3^*\left( e^{-\alpha x_2^*}\left( -\beta y^*W_{11}^{(2)}(0)v_2 \right. \right. \nonumber \\&\left. \left. +\,\dfrac{1}{2}\beta ^2y^*v_2^2{\bar{v}}_2\right) \right. \nonumber \\&\left. +e^{-\beta x_2^*}\left( -\beta v_2{\bar{v}}_2v_3+W_{11}^{(3)}(0)v_2\right. \right. \nonumber \\&\left. \left. +\,W_{11}^{(2)}(0)v_3-\dfrac{1}{2}\beta v_2^2{\bar{v}}_3\right) \right) \nonumber \\&+\,e^{-\alpha x_2^*}{\bar{v}}_2^*\left[ \alpha ^2\left( -\dfrac{1}{2}\alpha y^*v_2^2{\bar{v}}_2+ \dfrac{1}{2} y^*W_{20}^{(2)}(0){\bar{v}}_2\right. \right. \nonumber \\&\left. \left. +\, v_2{\bar{v}}_2v_3 +y^*W_{11}^{(2)}(0)v_2 +\dfrac{1}{2} v_2^2{\bar{v}}_3\right) \right. \nonumber \\&\left. \left. +\, \alpha \left( -\dfrac{1}{2}W_{20}^{(3)}(0){\bar{v}}_2-\dfrac{1}{2}W_{20}^{(2)}(0){\bar{v}}_3 \right. \right. \right. \nonumber \\&\left. \left. \left. -\,W_{11}^{(2)}(0)v_3-W_{11}^{(3)}(0)v_2\right) \right] \right\} . \end{aligned}$$
(C.7)

Since there are \(W_{20}(\theta )\) and \(W_{11}(\theta )\) in \(g_{21}\), we still need to compute them. From (30), (C.1) and (C.3), we have

$$\begin{aligned} \begin{aligned} {\dot{W}}&= {\dot{X}}_t - {\dot{z}}q - \dot{{\bar{z}}}{\bar{q}}\\&= {\left\{ \begin{array}{ll} AW - 2\mathrm{{Re}}\{{\overline{q}}^*(0)\cdot F_0(z,{\overline{z}})q(\theta )\}, &{} \theta \in [-1,0)\\ AW - 2\mathrm{{Re}}\{{\overline{q}}^*(0)\cdot F_0(z,{\overline{z}})q(0)\} + F_0(z,{\overline{z}}), &{} \theta = 0 \end{array}\right. }\\&\triangleq AW + H(z,{\overline{z}},\theta ), \end{aligned} \end{aligned}$$
(C.8)

where

$$\begin{aligned} H(z,{\overline{z}},\theta ) = H_{20}\dfrac{z^2}{2} + H_{11}(\theta )z{\overline{z}} + H_{02}(\theta )\dfrac{{\overline{z}}^2}{2} + \cdots . \end{aligned}$$
(C.9)

On the other hand, on \(C_0\) near to the origin, we have \({\dot{W}} = W_{z}{\dot{z}} + W_{{\overline{z}}}\dot{{\overline{z}}}\). Using (C.2) and (C.3) to replace \(W_{z}\) and \({\dot{z}}\) and their conjugates by their power series expansions, comparing the coefficients with the right-hand side of (C.8), we obtain

$$\begin{aligned} \left( 2\mathrm{i}\nu _{40} \tau _{40}I - A\right) W_{20}(\theta )= & {} H_{20}(\theta ),~~ \nonumber \\ -AW_{11}(\theta )= & {} H_{11}(\theta ), \end{aligned}$$
(C.10)

where I denotes the \(3\times 3\) identity matrix.

From (C.8), we know that for \(\theta \in [-1,0)\),

$$\begin{aligned}&H(z,{\overline{z}},\theta ) = -{\overline{q}}^*(0)\cdot f_0(z,{\overline{z}})q(\theta ) - q^*(0)\cdot \nonumber \\&\quad {\overline{f}}_0(z,{\overline{z}}){\overline{q}}(\theta ) = -g(z,{\overline{z}})q(\theta ) - {\overline{g}}(z,{\overline{z}}){\overline{q}}(\theta ).\nonumber \\ \end{aligned}$$
(C.11)

Substituting (C.4) into (C.9) gives

$$\begin{aligned} H(z,{\overline{z}},\theta )= & {} \left[ -g_{20}q(\theta ) - {\overline{g}}_{02}{\overline{q}}(\theta )\right] \frac{z^2}{2} \nonumber \\&+ \left[ -g_{11}q(\theta ) - {\overline{g}}_{11}{\overline{q}}(\theta )\right] z{\overline{z}} \nonumber \\&+ \left[ -g_{02}q(\theta ) - {\overline{g}}_{20}{\overline{q}}(\theta )\right] \frac{{\overline{z}}^2}{2} + \cdots .\nonumber \\ \end{aligned}$$
(C.12)

Comparing the coefficients in (C.12) with those in (C.9) gives that

$$\begin{aligned} H_{20}(\theta )= & {} -g_{20}q(\theta ) - {\overline{g}}_{02}{\overline{q}}(\theta ), \nonumber \\ H_{11}(\theta )= & {} -g_{11}q(\theta ) - {\overline{g}}_{11}{\overline{q}}(\theta ). \end{aligned}$$
(C.13)

From (C.10), (C.13) and the definition of A, we have

$$\begin{aligned} {\dot{W}}_{20}(\theta ) = 2\mathrm{i}\nu _{40} \tau _{40}W_{20}(\theta ) + g_{20}q(\theta ) + {\overline{g}}_{02}{\overline{q}}(\theta ). \end{aligned}$$
(C.14)

Notice that \(q(\theta ) = (v_1,v_2,v_3)^Te^{\mathrm{i}\nu _{40} \tau _{40}\theta } = q(0)e^{\mathrm{i}\nu _{40} \tau _{40}\theta }\), hence, using the method of variation of constants, the solution of (C.14) is given by

$$\begin{aligned} W_{20}(\theta )= & {} \dfrac{\mathrm{i}g_{20}}{\nu _{40} \tau _{40}}q(0)e^{\mathrm{i}\nu _{40} \tau _{40}\theta } + \dfrac{\mathrm{i}{\overline{g}}_{02}}{3\nu _{40} \tau _{40}}{\overline{q}}(0)e^{-\mathrm{i}\nu _{40} \tau _{40}\theta } \nonumber \\&+\, E_1e^{2\mathrm{i}\nu _{40} \tau _{40}\theta }, \end{aligned}$$
(C.15)

where \(E_1 = \left( E_1^{(1)},E_1^{(2)},E_1^{(3)}\right) ^T \in R^3\) is a constant vector.

Similarly, from (C.10), (C.13) and the definition of A, we have

$$\begin{aligned} {\dot{W}}_{11}(\theta ) = g_{11}q(\theta ) + {\overline{g}}_{11}{\overline{q}}(\theta ), \end{aligned}$$
(C.16)

and

$$\begin{aligned} W_{11}(\theta )= & {} -\dfrac{\mathrm{i}g_{11}}{\nu _{40} \tau _{40}}q(0)e^{\mathrm{i}\nu _{40} \tau _{40}\theta } \nonumber \\&+\, \dfrac{\mathrm{i}{\overline{g}}_{11}}{\nu _{40} \tau _{40}}{\overline{q}}(0)e^{-\mathrm{i}\nu _{40} \tau _{40}\theta } + E_2, \end{aligned}$$
(C.17)

where \(E_2 = \left( E_2^{(1)},E_2^{(2)},E_2^{(3)}\right) ^T \in {\mathbb {R}}^3\) is also a constant vector.

In what follows, we shall seek appropriate constant vectors \(E_1\) and \(E_2\) in (C.15) and (C.17), respectively. From (C.10) and the definition of A, we know that when \(\theta = 0\),

$$\begin{aligned} A(0)W_{20}(\theta ) = \int _{-1}^0\mathrm{d}\eta (\theta )W_{20}(\theta ) = 2\mathrm{i}\nu _{40} \tau _{40}W_{20}(0) - H_{20}(0) \end{aligned}$$
(C.18)

and

$$\begin{aligned} A(0)W_{11}(\theta ) = \int _{-1}^0\mathrm{d}\eta (\theta )W_{11}(\theta ) = -H_{11}(0), \end{aligned}$$
(C.19)

where \(\eta (\theta ) = \eta (\theta ,0)\). And from (C.8), we can obtain when \(\theta = 0\),

$$\begin{aligned}&H_{20}(0) = - g_{20}q(0) - {\overline{g}}_{02}{\overline{q}}(0) + 2\nu _{40} \nonumber \\&\quad \begin{pmatrix} 0 \\ -b_1v_2^2-\alpha e^{-\alpha x^*}v_2v_3+\frac{1}{2}\alpha ^2y^*e^{-\alpha x^*}v_2^2 \\ -\delta v_3^2-\frac{1}{2}\beta ^2y^*e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2^2+\beta e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2v_3 \end{pmatrix}, \end{aligned}$$
(C.20)
$$\begin{aligned}&H_{11}(0) = - g_{11}q(0) - {\overline{g}}_{11}{\overline{q}}(0) + \tau _{50} \nonumber \\&\quad \begin{pmatrix} 0 \\ -2b_1v_2{\bar{v}}_2- \alpha e^{-\alpha x^*}v_2{\bar{v}}_3-\alpha e^{-\alpha x^*}{\bar{v}}_2v_3+\alpha ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2 \\ -2\delta v_3{\bar{v}}_3-\beta ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2+\beta e^{-\alpha x^*}v_2{\bar{v}}_3+\beta e^{-\alpha x^*}{\bar{v}}_2v_3 \end{pmatrix}, \end{aligned}$$
(C.21)
$$\begin{aligned}&\left( 2\mathrm{i}\omega \tau _{50}I - \int _{-1}^0e^{2\mathrm{i}\omega \tau _{50}\theta }\mathrm{d}\eta (\theta )\right) E_1 = 2\tau _{50}\nonumber \\&\quad \begin{pmatrix} 0 \\ -b_1v_2^2-\alpha e^{-\alpha x^*}v_2v_3+\frac{1}{2}\alpha ^2y^*e^{-\alpha x^*}v_2^2 \\ -\delta v_3^2-\frac{1}{2}\beta ^2y^*e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2^2+\beta e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2v_3 \end{pmatrix}.\nonumber \\ \end{aligned}$$
(C.22)

From the definition of A, we have

$$\begin{aligned} \int _{-1}^0e^{2\mathrm{i}\nu _{40} \tau _{40}\theta }\mathrm{d}\eta (\theta ) = A(\mu )e^{2\mathrm{i}\nu _{40} \tau _{40}\theta } = L_{\mu }\left( e^{2\mathrm{i}\nu _{40} \tau _{40}\theta }\right) . \end{aligned}$$

therefore, when \(\mu = 0\), we have

$$\begin{aligned}&\int _{-1}^0e^{2\mathrm{i}\nu _{40} \tau _{40}\theta }\mathrm{d}\eta (\theta ) \\&\quad =\tau _{40} \begin{pmatrix} -c &{}\quad a &{}\quad 0\\ 0 &{}\quad -2b_1x_2^* - d_2 - \alpha y^* e^{-\alpha x_2^*} &{}\quad -\left( 1 - e^{-\alpha x_2^*}\right) \\ 0 &{}\quad 0 &{}\quad - 2\delta y^* - d \end{pmatrix} \\&\qquad +\, \tau _{40} \begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \beta y^*e^{-\beta x_2^*} &{}\quad 1 - e^{-\beta x_2^*} \end{pmatrix} e^{-2\mathrm{i}\nu _{40}\tau _{2}^*} \\&\qquad +\, \tau _{40} \begin{pmatrix} -b &{}\quad 0 &{}\quad 0\\ b &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} e^{-2\mathrm{i}\nu _{40} \tau _{40}}, \end{aligned}$$

thus, we have

$$\begin{aligned}&\begin{pmatrix} 2\mathrm{i}\nu _{40}+c + be^{-2\mathrm{i}\nu _{40}\tau _{40}} &{}\quad a &{}\quad 0\\ -be^{-2\mathrm{i}\nu _{40}\tau _{40}} &{}\quad 2\mathrm{i}\nu _{40}+2b_1x_2^* + d_2 + \alpha y^* e^{-\alpha x_2^*} &{}\quad \left( 1 - e^{-\alpha x_2^*}\right) \\ 0 &{}\quad -\beta y^*e^{-\beta x_2^*} e^{-2\mathrm{i}\nu _{40}\tau _2^*} &{}\quad 2\mathrm{i}\nu _{40}+ 2\delta y^* + d - (1 - e^{-\beta x_2^*})e^{-2\mathrm{i}\nu _{40}\tau _2^*} \end{pmatrix}E_1 \nonumber \\&\quad = 2 \begin{pmatrix} 0 \\ -b_1v_2^2-\alpha e^{-\alpha x^*}v_2v_3+\frac{1}{2}\alpha ^2y^*e^{-\alpha x^*}v_2^2 \\ -\delta v_3^2-\frac{1}{2}\beta ^2y^*e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2^2+\beta e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2v_3 \end{pmatrix}, \end{aligned}$$
(C.23)

hence,

$$\begin{aligned} \begin{array}{l} E_1=2 \begin{pmatrix} 2\mathrm{i}\nu _{40}+c + be^{-2\mathrm{i}\nu _{40}\tau _{40}} &{}\quad a &{}\quad 0\\ -be^{-2\mathrm{i}\nu _{40}\tau _{40}} &{}\quad 2\mathrm{i}\nu _{40}+2b_1x_2^* + d_2 + \alpha y^* e^{-\alpha x_2^*} &{}\quad \left( 1 - e^{-\alpha x_2^*}\right) \\ 0 &{}\quad -\beta y^*e^{-\beta x_2^*} e^{-2\mathrm{i}\nu _{40}\tau _2^*} &{}\quad 2\mathrm{i}\nu _{40}+ 2\delta y^* + d - (1 - e^{-\beta x_2^*})e^{-2\mathrm{i}\nu _{40}\tau _2^*} \end{pmatrix}^{-1}\\ ~~~~~~\times \begin{pmatrix} 0 \\ -b_1v_2^2-\alpha e^{-\alpha x^*}v_2v_3+\frac{1}{2}\alpha ^2y^*e^{-\alpha x^*}v_2^2 \\ -\delta v_3^2-\frac{1}{2}\beta ^2y^*e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2^2+\beta e^{-\alpha x^*-2\mathrm{i}\nu _{40} \tau _{40}}v_2v_3 \end{pmatrix}. \end{array} \end{aligned}$$
(C.24)

Similarly, substituting (C.17) and (C.15) into (C.19), we obtain

$$\begin{aligned}&\int _{-1}^0\mathrm{d}\eta (\theta )E_2 = - \begin{pmatrix} 0 \\ -2b_1v_2{\bar{v}}_2- \alpha e^{-\alpha x^*}v_2{\bar{v}}_3-\alpha e^{-\alpha x^*}{\bar{v}}_2v_3+\alpha ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2 \\ -2\delta v_3{\bar{v}}_3-\beta ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2+\beta e^{-\alpha x^*}v_2{\bar{v}}_3+\beta e^{-\alpha x^*}{\bar{v}}_2v_3 \end{pmatrix}, \end{aligned}$$
(C.25)

hence,

$$\begin{aligned} \begin{array}{l} E_2= \begin{pmatrix} -c - b &{}\quad a &{}\quad 0\\ b &{}\quad -2b_1x_2^* - d_2 - \alpha y^* e^{-\alpha x_2^*} &{}\quad -\left( 1 - e^{-\alpha x_2^*}\right) \\ 0 &{}\quad \beta y^*e^{-\beta x_2^*} &{}\quad - 2\delta y^* - d + (1 - e^{-\beta x_2^*}) \end{pmatrix}^{-1}\\ ~~~~~~\times \begin{pmatrix} 0 \\ -2b_1v_2{\bar{v}}_2- \alpha e^{-\alpha x^*}v_2{\bar{v}}_3-\alpha e^{-\alpha x^*}{\bar{v}}_2v_3+\alpha ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2 \\ -2\delta v_3{\bar{v}}_3-\beta ^2y^*e^{-\alpha x^*}v_2{\bar{v}}_2+\beta e^{-\alpha x^*}v_2{\bar{v}}_3+\beta e^{-\alpha x^*}{\bar{v}}_2v_3 \end{pmatrix}. \end{array} \end{aligned}$$
(C.26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Li, Y., Liu, M. et al. Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn 99, 3323–3350 (2020). https://doi.org/10.1007/s11071-020-05467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05467-z

Keywords

Navigation