Skip to main content
Log in

Decomposition optimization method for switching models using EM algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes a decomposition optimization-based expectation maximization algorithm for switching models. The identities of each sub-model are estimated in the expectation step, while the parameters are updated using the decomposition optimization method in the maximization step. Compared with the traditional expectation maximization algorithm and the gradient descent expectation maximization algorithm, the decomposition optimization-based expectation maximization algorithm avoids the matrix inversion and eigenvalue calculation; thus, it can be extended to complex nonlinear models and large-scale models. Convergence analysis and simulation examples are given to show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Yan, H.Y., Zhu, Y.G.: Bang-bang control model for uncertain switched systems. Appl. Math. Model. 39(10–11), 2994–3002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wu, F.Y., Lian, J.: Stabilization of constrained switched systems via multiple Lyapunov R-functions. Syst. Control Lett. (2020). https://doi.org/10.1016/j.sysconle.2020.104686

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, Y.H., Zhang, X.: Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 414, 126663 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, T., Huang, J.: Discrete-time distributed observers over jointly connected switching networks and an application. IEEE Trans. Autom. Control 66(4), 1918–1924 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caswell, H.: Construction, Analysis, and Interpretation. Sinauer, Sunderland (2001)

    Google Scholar 

  6. Navarro, G.S., Gallegos, J.A.: On the property sign-stability of equilibria in quasimonotone positive nonlinear systems. In: Proc of the 33rd IEEE Conf Decis Control., vol. 4, pp. 4043–4048 (1994)

  7. Shorten, R., Wirth, F., Leith, D.: A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Trans. Netw. 14(3), 616–629 (2006)

    Article  Google Scholar 

  8. Vidal, R.: Recursive identification of switched ARX systems. Automatica 44(2), 2274–2287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, H., Fan, H., Pan, J.: Complex dynamics of a four-dimensional circuit system. Int. J. Bifurc. Chaos 31(14), 2150208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, M.H., Liu, X.M., et al.: Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems. Nonlinear Dyn. 89(1), 197–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, Y.H., Zhang, X.: Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs 68(12), 3597–3601 (2021)

    Google Scholar 

  12. Li, J.M., Ding, F.: Identification methods of nonlinear systems based on the kernel functions. Nonlinear Dyn. 104(3), 2537–2552 (2021)

    Article  Google Scholar 

  13. Xu, L., Ding, F., Zhu, Q.: Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements. IEEE Trans. Instrum. Meas. 71, 6501313 (2022)

    Google Scholar 

  14. Söderström, T., Soverini, U.: Errors-in-variables identification using maximum likelihood estimation in the frequency domain. Automatica 79, 131–143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garulli, A., Paoletti, S., Vicino, A.: A survey on switched and piecewise affine system identification. IFAC Symp. Syst. Ident. 45(16), 344–355 (2012)

    Google Scholar 

  16. Bianchi, F., Breschi, V., Piga, D., Piroddi, L.: Model structure selection for switched NARX system identification: a randomized approach. Automatica 125, 109415 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lauer, F., Bloch, G.: Hybrid System Identification. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  18. Ma, Y.J., Zhao, S.Y., Huang, B.: Multiple-model state estimation based on variational Bayesian inference. IEEE Trans. Autom. Control 64(4), 1679–1685 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)

    Article  Google Scholar 

  20. Wang, D.Q., Zhang, S., et al.: A novel EM identification method for Hammerstein systems with missing output data. IEEE Trans. Ind. Inform. 16(4), 2500–2508 (2020)

    Article  Google Scholar 

  21. Chen, J., Huang, B., et al.: Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica 94, 194–204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, J.X., Huang, B., et al.: Iterative identification of Hammerstein parameter varying systems with parameter uncertainties based on the variational Bayesian approach. IEEE Trans. Syst. Man Cyber. Syst. 50(3), 1035–1045 (2020)

    Article  Google Scholar 

  23. Lu, Y.J., Huang, B., Khatibisepehr, S.: A variational Bayesian approach to robust identification of switched ARX models. IEEE Trans. Cyber. 46(12), 3195–3208 (2016)

    Article  Google Scholar 

  24. Yang, X.Q., Yin, S.: Robust global identification and output estimation for LPV dual-rate systems subjected to random output time-delays. IEEE Trans. Ind. Inform. 13(6), 2876–2885 (2017)

    Article  Google Scholar 

  25. Xu, L.: Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 41(2), 805–830 (2022)

    Article  MathSciNet  Google Scholar 

  26. Gan, M., Chen, X.X., et al.: Adaptive RBF-AR models based on multi-innovation least squares method. IEEE Signal Process. Lett. 26(8), 1182–1186 (2019)

    Article  Google Scholar 

  27. Xu, H., Ding, F., Yang, E.F.: Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. 95(3), 2079–2092 (2019)

    Article  MATH  Google Scholar 

  28. Chen, J., Zhu, Q.M., Hu, M.F., Guo, L.X., Narayan, P.: Improved gradient descent algorithms for time-delay rational state-space systems: intelligent search method and momentum method. Nonlinear Dyn. 101(1), 361–373 (2020)

    Article  Google Scholar 

  29. Xu, L., Yang, E.F.: Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonliear Control 31(1), 148–165 (2021)

    Article  MathSciNet  Google Scholar 

  30. Wang, D.Q.: Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, D.Q., Mao, L., et al.: Recasted models based hierarchical extended stochastic gradient method for MIMO nonlinear systems. IET Control Theory Appl. 11(4), 476–485 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ding, F., Zhang, X., Xu, L.: The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 33(11), 1601–1608 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bai, E.W.: Identification of linear systems with hard input nonlinearities of known structure. Automatica 38(5), 853–860 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11, 271–282 (1998)

    Article  Google Scholar 

  35. Gan, M., Chen, G.Y., et al.: Term selection for a class of nonlinear separable models. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 445–451 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y.H., Ding, F.: Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 27, 1600–1604 (2020)

    Article  Google Scholar 

  37. Hou, J., Chen, F.W., Zhu, Z.Q.: Gray-box parsimonious subspace identification of Hammerstein-type systems. IEEE Trans. Ind. Electron. 68(10), 9941–9951 (2021)

    Article  Google Scholar 

  38. Chen, J., Zhu, Q.M., et al.: Interval error correction auxiliary model based gradient iterative algorithms for multi-rate ARX models. IEEE Trans. Autom. Control 65(10), 4385–4392 (2020)

  39. Zhang, X.: Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process Lett. 29, 399–403 (2022)

  40. Diederik, P.K., Jimmy, L.B.: ADAM: A method for stochastic optimization. In: Int. Conf. Lear. Represent, San Diego, USA, pp. 7–9 (2015)

  41. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747v2 [cs.LG] (2017)

  42. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Bako, L., Boukharouba, K., Duviella, E., Lecoeuche, S.: A recursive identification algorithm for switched linear/affine models. Nonlinear Anal. Hybrid Syst. 5, 242–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Aggoune, L., Chetouani, Y., Raïsi, T.: Fault detection in the distillation column process using Kullback Leibler divergence. ISA Trans. 63, 394–400 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the anonymous reviewers for their constructive and helpful comments and suggestions to improve the quality of this paper.

Funding

This work is supported by the National Natural Science Foundation of China (No. 61973137), the Natural Science Foundation of Jiangsu Province (No. BK20201339) and the Funds of the Science and Technology on Near-Surface Detection Laboratory (Nos. 61424140207, 61424140202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (No. 61973137), the Natural Science Foundation of Jiangsu Province (No. BK20201339) and the Funds of the Science and Technology on Near-Surface Detection Laboratory (Nos. 61424140207, 61424140202).

Appendix

Appendix

Proof of of Theorem 1

In iteration \(k-1\), the Q function can be written by

$$\begin{aligned} Q({\textbf{W}})&=\sum \limits _{t=1}^{N}\log p(y(t)|{\textbf{W}})\\&=\sum \limits _{t=1}^{N}\log \sum \limits _{i=1}^{l} p(y(t),I(t)\\&=i|Y(t-1),U(t-1),{\varvec{\omega }}^{k-1}_i)\\&=\sum \limits _{t=1}^{N}\log \sum \limits _{i=1}^{l} p^k_p(I(t)=i)\\&\quad \times \frac{p(y(t),I(t)=i|Y(t-1),U(t-1),{\varvec{\omega }}^{k-1}_i)}{p^k_p(I(t)=i)}. \end{aligned}$$

According to Jensen’s inequality, the right side of the above equation satisfies

$$\begin{aligned}&\sum \limits _{t=1}^{N} \log \sum \limits _{i=1}^{l} p^k_p(I(t)=i)\\&\qquad \times \frac{p(y(t),I(t)=i|Y(t-1),U(t-1),{\varvec{\omega }}^{k-1}_i)}{p^k_p(I(t)=i)}\\&\quad \geqslant \sum \limits _{t=1}^{N} \sum \limits _{i=1}^{l} p^k_p(I(t)=i)\log \\&\qquad \times \frac{p(y(t),I(t)=i|Y(t-1),U(t-1),{\varvec{\omega }}^{k-1}_i)}{p^k_p(I(t)=i)}. \end{aligned}$$

Based on the Kullback–Leibler divergence [44], when

$$\begin{aligned}&p^k_p(I(t)=i)\\&\quad =\frac{p(y(t)|u(t),\ldots ,u(1),{\varvec{\omega }}^{k-1}_i,I(t)=i)p(I(t)=i)}{\sum _{i=1}^{l}p(y(t)|u(t), \ldots ,u(1),{\varvec{\omega }}^{k-1}_i,I(t)=i)p(I(t)=i)}, \end{aligned}$$

the Q function is

$$\begin{aligned}&Q({\textbf{W}}|{\textbf{W}}_{k-1},p^k_p(I(t)=i))\\&\quad =\arg \max _{p(I(t)=i)} Q({\textbf{W}}|{\textbf{W}}_{k-1},p(I(t)=i)), \end{aligned}$$

that is

$$\begin{aligned}&Q({\textbf{W}}|{\textbf{W}}_{k-1},p^k_p(I(t)=i))\\&\quad =Q({\textbf{W}}_{k-1},p^k_p(I(t)=i))\\&\quad \geqslant Q({\textbf{W}}_{k-1},p^{k-1}_p(I(t)=i))\\&\quad =Q({\textbf{W}}|{\textbf{W}}_{k-1},p^{k-1}_p(I(t)=i)). \end{aligned}$$

When \(p^k_p(I(t)=i)\) has been obtained, the parameter estimates \({\textbf{W}}_{k}\) of the LS algorithm satisfy

$$\begin{aligned} Q({\textbf{W}}_{k},p^k_p(I(t){=}i))=\arg \max _{{\textbf{W}}} Q({\textbf{W}},p^k_p(I(t){=}i)), \end{aligned}$$
(17)

while the estimates \({\textbf{W}}_{k}\) by using the GD-EM and DO-EM (AA-DO-EM) algorithms can guarantee

$$\begin{aligned} Q({\textbf{W}}_{k},p^k_p(I(t)=i))\geqslant Q({\textbf{W}}_{k-1},p^k_p(I(t)=i)). \end{aligned}$$
(18)

Therefore, it follows that

$$\begin{aligned} Q({\textbf{W}}_{k-1})= & {} Q({\textbf{W}}_{k-1},p^{k-1}_p(I(t)=i))\\\leqslant & {} Q({\textbf{W}}_{k-1},p^{k}_p(I(t)=i))\\\leqslant & {} Q({\textbf{W}}_{k},p^k_p(I(t)=i))=Q({\textbf{W}}_{k}). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Mao, Y., Hu, M. et al. Decomposition optimization method for switching models using EM algorithm. Nonlinear Dyn 111, 9361–9375 (2023). https://doi.org/10.1007/s11071-023-08302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08302-3

Keywords

Navigation