Skip to main content

The Proposed Automated Optimal Design for Power Switch: A Thermo-mechanical-Coordinated and Multi-objective-Oriented Optimization Methodology

  • Chapter
  • First Online:
Automated Design of Electrical Converters with Advanced AI Algorithms
  • 162 Accesses

Abstract

With the rising popularity of electric vehicles (EVs), the power control unit (PCU) of EVs has gained widespread attention (Emadi et al. in IEEE Trans. Power Electron. 21:567–577, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, 2006.

    Google Scholar 

  2. Yole Développement. EV-HEV market and technology trends. [Online]. www.psma.com, 2015.

  3. D. Hirschmann, D. Tissen, S. Schroder, and R. W. D. Doncker, “Reliability prediction for inverters in hybrid electrical vehicles,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2511–2517, 2007.

    Google Scholar 

  4. B. Ji, X. Song, W. Cao, V. Pickert, Y. Hu, J. W. Mackersie, and G. Pierce, “In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1535–1543, 2015.

    Google Scholar 

  5. Z. Liang, P. Ning, F. Wang, and L. Marlino, “A phase-leg power module packaged with optimized planar interconnections and integrated double-sided cooling,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 443–450, Sep. 2014.

    Google Scholar 

  6. S. Seal and H. A. Mantooth, “High performance silicon carbide power packaging—Past trends, present practices, and future directions”, Energies, vol. 10, no. 3, p. 341, 2017.

    Google Scholar 

  7. H. Zhang, S. S. Ang, H. A. Mantooth, and S. Krishnamurthy, “A high temperature, double-sided cooling SiC power electronics module,” in IEEE ECCE, 2013, pp. 2877–2883.

    Google Scholar 

  8. N. Zhu, H. A. Mantooth, D. Xu, M. Chen, and M. D. Glover, “A solution to press-pack packaging of SiC MOSFETs,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8224–8234, 2017.

    Google Scholar 

  9. J. O. Gonzalez, O. Alatise, A. M. Aliyu, P. Rajaguru, A. Castellazzi, L. Ran, P. A. Mawby, and C. Bailey, “Evaluation of SiC schottky diodes using pressure contacts,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8213–8223, 2017.

    Google Scholar 

  10. S. Kicin, M. Laitinen, C. Haederli, J. Sikanen, R. Grinberg, C. Liu, J. H. Fabian, and A. Hamidi, “Low-voltage AC drive based on double-sided cooled IGBT press-pack modules,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2140–2146, 2012.

    Google Scholar 

  11. P. Ning, Z. Liang, and F. Wang, “Power module and cooling system thermal performance evaluation for HEV application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 487–495, 2014.

    Google Scholar 

  12. Z. Liang, P. Ning, and F. Wang, “Development of advanced all-SiC power modules,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2289–2295, 2014.

    Google Scholar 

  13. S. Li, L. M. Tolbert, F, and F. Z. Peng, “Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3616–3624, 2014.

    Google Scholar 

  14. F. Yang, Z. Wang, Z. Liang, and F. Wang, “Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 84–98, 2019.

    Google Scholar 

  15. L. Yin, C. Kapusta, A. Gowda, and K. Nagarkar, “A wire-bondless packaging platform for silicon carbide power semiconductor devices,” Journal of Electronic Packaging, vol. 140, no. 3, pp. 031009–1–8.

    Google Scholar 

  16. E. Vagnon, P. O. Jeannin, J. C. Crebier, and Y. Avenas, “A bus-bar-like power module based on three-dimensional power-chip-on-chip hybrid integration,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2046–2055, 2010.

    Google Scholar 

  17. G. Regnat, P. O. Jeannin, D. Frey, J. Ewanchuk, S. V. Mollov, and J. P. Ferrieux, “Optimized power modules for silicon carbide MOSFET,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1634–1644, 2018.

    Google Scholar 

  18. X. Zhao, B. Gao, L. Zhang, D. C. Hopkins, and A. Q. Huang, “Performance optimization of A 1.2kV SiC high density half bridge power module in 3D package”, in IEEE APEC, 2018, pp. 1266–1271.

    Google Scholar 

  19. P. Lasserre, D. Lambert, and A. Castellazzi, “Integrated Bi-directional SiC MOSFET power switches for efficient, power dense and reliable matrix converter assembly,” in IEEE WiPDA, 2016, pp. 188–193.

    Google Scholar 

  20. M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, and G. Q. Lu, “Pressureless silver sintering on nickel for power module packaging,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2019.

    Google Scholar 

  21. Y. H. Mei, J. Y. Lian, X. Chen, G. Chen, X. Li, and G. Q. Lu, “Thermo-mechanical reliability of double-sided IGBT assembly bonded by sintered nanosilver,” IEEE Trans. Device and Mater. Rel., vol. 14, no. 1, pp. 194–202, 2014.

    Google Scholar 

  22. K. Sienski, R. Eden, and D. Schaefer, “3-D electronic interconnect packaging,” in IEEE Aerospace Applications Conference, 1996, pp. 363–373.

    Google Scholar 

  23. H. Tanisawa, F. Kato, K. Koui, S. Sato, K. Watanabe, H. Takahashi, Y. Murakami, and H. Sato, “Transient thermal characteristics of high-temperature SiC power module enhanced with Al-bump technology,” Japanese Journal of Applied Physics, vol. 57, 2018, pp. 04FR10–1–5.

    Google Scholar 

  24. S. Zhu, Y. Li, Y. Wang, Y. Ma, C. Wu, M. Jiao, Z. Zhao, and J. Yu, “Advanced double sided cooling IGBT module and power control unit development,” in IEEE IWIPP, 2017, pp. 1–4.

    Google Scholar 

  25. A. Matsushita, R. Saito, T. Tokuyama, K. Nakatsu, and T. Kimura, “An experimental study on the thermal performance of double-side direct-cooling power module structure,” in PCIM Europe, 2016, pp. 1–5.

    Google Scholar 

  26. I. Aranzabal, I. M. de Alegria, N. Delmonte, P. Cova, and I. Kortabarria, “Comparison of the heat transfer capabilities of conventional single-phase and two-phase cooling systems for electric vehicle IGBT power module,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2018. (Early Access)

    Google Scholar 

  27. C. Buttay, J. Rashid, C. M. Johnson, P. Ireland, F. Udrea, G. Amaratunga, and R. K. Malhan, “High performance cooling system for automotive inverters,” in IEEE European Conference on Power Electronics and Applications, 2007, pp. 1–9.

    Google Scholar 

  28. D. R. M. Woo, H. H. Yuan, J. A. J. Li, L. J. Bum, and Z. Hengyun, “Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220°C,” in IEEE ECTC, 2016, pp. 1190–1196.

    Google Scholar 

  29. S. Dwarakanath, P. M. Raj, V. Smet, V. Sundaram, M. D. Losego, and R. Tummala, “High-temperature and moisture-ageing reliability of high-density power packages for electric vehicles,” in IEEE ECTC, 2018, pp. 179–184.

    Google Scholar 

  30. A. Grassmann, O. Geitner, W. Hable, C. Neugirg, A. Schwarz, F. Winter, and I. Yoo, “Double sided cooled module concept for high power density in HEV applications,” in IEEE PCIM, 2015, pp. 1–7.

    Google Scholar 

  31. A. K. Solomona, R. Skuriat, A. Castellazzi, and P. Wheeler, “Modular integration of a matrix converter,” IEEJ Trans. Electrical and Electronic Engineering, vol. 11, pp. 103–111, 2016.

    Google Scholar 

  32. C. J. Marbut, M. Montazeri, and D. R. Huitink, “Rapid solder interconnect fatigue life test methodology for predicting thermomechanical reliability,” IEEE Trans. Device and Mater. Rel., vol. 18, no.3, pp. 412–421, 2018.

    Google Scholar 

  33. T. M. Evans, Q. Le, S. Mukherjee, I. A. Razi, T. Vrotsos, Y. Peng, and A. H. Mantooth, “PowerSynth: A power module layout generation tool”, IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2018.

    Google Scholar 

  34. H. A. Mantooth, T. Evans, C. Farnell, Q. Le, and R. Murphree, “Emerging trends in silicon carbide power electronics design”, CPSS Trans. Power Electron. Appl., vol. 2, no. 3, pp. 161–169, 2017.

    Google Scholar 

  35. T. Dragicevic, P. Wheeler, and F. Blaabjerg, “Artificial intelligence aided automated design for reliability of power electronic systems,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2018. (Early Access)

    Google Scholar 

  36. A. Bindra and A. Mantooth, “Modern tool limitations in design automation: Advancing automation in design tools is gathering momentum,” IEEE Power Electron. Mag., vol. 6, no. 1, pp. 28–33, 2019.

    Google Scholar 

  37. Yole Développement. Infineon FF400R07A01E3. [Online]. www.systemplus.fr, 2018.

  38. Infineon. FF400R07A01E3_S6. [Online]. www.infineon.com, 2018.

  39. A. Hanif, Y. Yu, D. Devoto, and F. H. Khan, “A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices”, IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2018.

    Google Scholar 

  40. B. Hu, J. O. Gonzalez, L. Ran, H. Ren, Z. Zeng, W. Lai, B. Gao, O. Alatise, H. Lu, C. Bailey, and P. Mawby, “Failure and reliability analysis of a SiC power module based on stress comparison to a Si device”, IEEE Trans. Device and Mater. Rel., vol. 17, no. 4, pp. 727–737, 2017.

    Google Scholar 

  41. R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlations”, in Proc. of IEEE ECTC, pp. 1048–1058, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Xinze, L., Hao, M., Jingjing, H., Zheng, Z. (2023). The Proposed Automated Optimal Design for Power Switch: A Thermo-mechanical-Coordinated and Multi-objective-Oriented Optimization Methodology. In: Automated Design of Electrical Converters with Advanced AI Algorithms. Springer, Singapore. https://doi.org/10.1007/978-981-99-0459-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0459-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0458-7

  • Online ISBN: 978-981-99-0459-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics