Skip to main content
Log in

Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis–Procesi model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We establish the existences of periodic and soliton solutions to unperturbed general Degasperis–Procesi model, and corresponding solutions are shown to verify it. Especially, the Gaussian solitons are presented, which are barely seen in non-logarithmic equation. Moreover, the stability of soliton and modulation instability of the original equation are analyzed. Finally, by taking the external perturbed terms into consideration, the chaotic behaviors emerge. Corresponding largest Lyapunov exponents and phase portraits are presented to verify our conclusion graphically. The results such as Gaussian soliton solutions and chaotic behavior for the general Degasperis–Procesi model are initially discovered in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statements

All data generated or analyzed during this study are included in this article.

References

  1. Liu, W.J., Tian, B., Zhang, H.Q., et al.: Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota’s bilinear method. Phys. Rev. E 77(6), 066605 (2008)

    Article  MathSciNet  Google Scholar 

  2. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1456–1458 (1971)

    Article  MATH  Google Scholar 

  3. Liu, C.S.: Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Commun. Theor. Phys. 48(4), 601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, C.S.: All single traveling wave solutions to (3+1)-dimensional Nizhnok–Novikov–Veselov equation. Commun. Theor. Phys. 45(6), 991–992 (2006)

    Article  MathSciNet  Google Scholar 

  5. Liu, C.S.: The classification of traveling wave solutions and superposition of multi-solutions to Camassa–Holm equation with dispersion. Chin. Phys. B. 16(7), 1832 (2006)

    Google Scholar 

  6. Mateus, C.P., Cardoso, W.B.: Influence of fourth-order dispersion on the Anderson localization. Nonlinear. Dynam. 101(1), 611–618 (2020)

    Article  Google Scholar 

  7. Liu, C.S.: The Gaussian soliton in the Fermi–Pasta–Ulam chain. Nonlinear. Dynam. 106(1), 899–905 (2021)

    Article  Google Scholar 

  8. Tiofack, C.G.L., Tchepemen, N.N., Mohamadou, A., et al.: Stability of Gaussian-type soliton in the cubic-quintic nonlinear media with fourth-order diffraction and \(\cal{PT} \)-symmetric potentials. Nonlinear Dynam. 98(1), 317–326 (2019)

    Article  MATH  Google Scholar 

  9. Wazwaz, A.M., El-Tantawy, S.A.: Gaussian soliton solutions to a variety of nonlinear logarithmic Schrödinger equation. J. Electromagn. Wave. 30(14), 1909–1917 (2016)

    Article  Google Scholar 

  10. Hefter, E.F.: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. A 32(2), 1201 (1985)

    Article  Google Scholar 

  11. Bialynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20(3–4), 539 (1979)

    Article  MATH  Google Scholar 

  12. Liu, C.S.: Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions. Commun. Theor. Phys. 73(4), 045007 (2021)

    Article  MathSciNet  Google Scholar 

  13. Omel’yanov, G.: Classical and nonclassical solitary waves in the general Degasperis–Procesi model. Russ. J. Math. Phys. 26(3), 384–390 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Axler, S.: Linear algebra done right. Springer Science and Business Media, Berlin (1997)

    Book  MATH  Google Scholar 

  15. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Degasperis, A., Giuseppe, G.: Symmetry and Perturbation theory: Spt 98. World Scientific, London (1999)

    Google Scholar 

  17. Liang, J., Li, J., Zhang, Y.: Bifurcations and exact solutions of an asymptotic rotation-Camassa–Holm equation. Nonlinear Dynam. 101(4), 2423–2439 (2020)

    Article  Google Scholar 

  18. Abdeljabbar, A., Hossen, M.B., Roshid, H.O., et al.: Interactions of rogue and solitary wave solutions to the (2+1)-D generalized Camassa–Holm–KP equation. Nonlinear Dynam. (2022). https://doi.org/10.1007/s11071-022-07792-x

  19. Feng, Y., Wang, X., Bilige, S.: Evolutionary behavior and novel collision of various wave solutions to (3+1)-dimensional generalized Camassa–Holm Kadomtsev–Petviashvili equation. Nonlinear. Dynam. 104(4), 4265–4275 (2021)

    Article  Google Scholar 

  20. Wang, Z., Liu, X.: Bifurcations and exact traveling wave solutions for the KdV-like equation. Nonlinear Dynam. 95(1), 465–477 (2019)

  21. Kai, Y., Chen, S., Zheng, B., Zhang, K., Yang, N., Xu, W.: Qualitative and quantitative analysis of nonlinear dynamics by the complete discrimination system for polynomial method. Chaos Soliton Fract. 141, 110314 (2020)

  22. Kai, Y., Chen, S., Zhang, K., et al.: A study of the shallow water waves with some Boussinesq-type equations. Wave Random Complex (2021). https://doi.org/10.1080/17455030.2021.1933259

  23. Kai, Y., Li, Y., Huang, L.K.: Topological properties and wave structures of Gilson–Pickering equation. Chaos Soliton Fract. 157, 111899 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kai, Y., Ji, J., Yin, Z.: Study of the generalization of regularized long-wave equation. Nonlinear Dynam. 107(3), 2745–2752 (2022)

    Article  Google Scholar 

  25. Gao, S., Wu, R., Wang, X., et al.: A 3D model encryption scheme based on a cascaded chaotic system. Signal Process. 220, 108745 (2022)

    Google Scholar 

  26. Gao, S., Wu, R., Wang, X., et al.: EFR-CSTP: encryption for face recognition based on the Chaos and Semi-tensor product theory. Inform. Sci. (2022). https://doi.org/10.1016/j.ins.2022.11.121

    Article  Google Scholar 

  27. Wu, R., Gao, S., Wang, X., et al.: AEA-NCS: an audio encryption algorithm based on a nested chaotic system. Chaos Solitons Fract. 165, 112770 (2022)

    Article  Google Scholar 

  28. Cao, C.W.: A qualitative test for single soliton solution. J. Zhengzhou. Univ. 1984(2), 3–7 (1984)

    Google Scholar 

  29. Karpman, V.I.: Stabilization of soliton instabilities by higher order dispersion: KdV-type equations. Phys. Lett. A 210(1–2), 77–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Potasek, M.J., Potasek, M.J.: Modulation instability in an extended nonlinear Schrödinger equation. Opt. Lett. 12(11), 921–923 (1987)

    Article  Google Scholar 

  31. Soriano, D.C., Fazanaro, F.I., Suyama, R., et al.: A method for Lyapunov spectrum estimation using cloned dynamics and its application to the discontinuously-excited FitzHugh–Nagumo model. Nonlinear Dynam. 67(1), 413–424 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 42002271 ), and Project funded by China Postdoctoral Science Foundation (Grant no. 2021T140514 ).

Funding

Science Foundation of China, Grant No. 42002271, China Postdoctoral Science Foundation Grant No. 2021T140514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuke Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, Y., Huang, L. Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis–Procesi model. Nonlinear Dyn 111, 8687–8700 (2023). https://doi.org/10.1007/s11071-023-08290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08290-4

Keywords

Navigation