Skip to main content
Log in

Frequency domain approach to the critical step size of discrete-time recurrent neural networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is usually essential to reveal the relationship between continuous-time systems and discrete-time ones. First, a discrete-time recurrent neural network is presented by the Euler scheme in this paper. Then, the time step size is set to a bifurcation parameter and frequency domain approach is adopted for Hopf bifurcation analysis. Moreover, the periodic solutions are obtained by the harmonic balance method; then the stability conditions are presented. The critical step size is determined with which the discrete-time recurrent neural network can inherit the stable state of the continuous-time one. Finally, one numerical example of the discrete-time recurrent neural network is given to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are included in this article.

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    Article  MATH  Google Scholar 

  2. Suzuki, K., Abe, H., MacMahon, H., Doi, K.: Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans. Med. Imaging 25(4), 406–416 (2006)

    Article  Google Scholar 

  3. Chen, Y.S., Jiang, H.L., Li, C.Y., Jia, X.P., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  4. Abu-Khalaf, M., Lewis, F.L.: Nearly optimal control laws for nonlinear systems withsaturating actuators using a neural network HJB approach. Automatica 41(5), 779–791 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vrabie, D., Lewis, F.: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw. 22(3), 237–246 (2009)

    Article  MATH  Google Scholar 

  6. Yang, X.S., Lam, J., Ho, D.W.C., Feng, Z.G.: Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans. Autom. Control 62(11), 5511–5521 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azad, H.B., Mekhilef, S., Ganapathy, V.G.: Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans. Sustain. Energy 5(2), 546–553 (2014)

    Article  Google Scholar 

  8. Liu, M.Y., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recognit. 68, 346–362 (2017)

    Article  Google Scholar 

  9. Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N.: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Pr. 72–73, 303–315 (2016)

    Article  Google Scholar 

  10. Boonsatit, N., Rajchakit, G., Sriraman, R., Lim, C.P., Agarwal, P.: Finite/fixed-time synchronization of delayed Clifford-value recurrent neural networks. Adv. Differ. Equ. 2021(1), 276 (2021)

    Article  MATH  Google Scholar 

  11. Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C.P., Agarwal, P.: Exponential stability in the Lagrange sense for Clifford-valued recurrent neural networks with time delays. Adv. Differ. Equ. 2021(1), 256 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C.P., Agarwal, P.: Global exponential stability of Clifford-valued neural networks with time-varying delays and impulsive effects. Adv. Differ. Equ. 2021(1), 208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rajchakit, G., Agarwal, P., Sriraman, R.: Stability Analysis of Neural Networks. Springer, Singapore (2021)

    Book  MATH  Google Scholar 

  14. Yu, W.W., Cao, J.D., Chen, G.R.: Stability and Hopf bifurcation of a general delayed recurrent neural network. IEEE Trans. Neural Netw. 19(5), 845–854 (2008)

    Article  Google Scholar 

  15. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  16. Zeng, X.C., Xiong, Z.L., Wang, C.J.: Hopf bifurcation for neutral-type neural network model with two delays. Appl. Math. Comput. 282, 17–31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karaoǧlu, E., Yılmaz, E., Merdan, H.: Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays. Nonlinear Dyn. 85(2), 1039–1051 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Li, L., Li, Y.X., Cheng, Z.S.: Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays. Neural Process. Lett. 48(3), 1481–1502 (2018)

    Article  Google Scholar 

  19. He, Z.M., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Allwright, D.J.: Harmonic balance and the Hopf bifurcation. Math. Proc. Camb. Philos. Soc. 82(3), 453–467 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mees, A.I., Chua, L.O.: The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circuits Syst. 26(4), 235–254 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moiola, J.L., Chen, G.R.: Hopf Bifurcation Analysis: a Frequency Domain Approach. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  23. Gentile, F.S., Moiola, J.L., Chen, G.R.: Frequency-Domain Approach to Hopf Bifurcation Analysis: Continuous Time-Delayed Systems. World Scientific, Singapore (2019)

    Book  MATH  Google Scholar 

  24. Gentile, F.S., Moiola, J.L.: Hopf bifurcation analysis of distributed delay equations with applications to neural networks. Int. J. Bifurcat. Chaos 25(11), 1550156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, J.C., Peng, M.S.: Local Hopf bifurcation analysis and global existence of periodic solutions in a gene expression model with delays. Nonliear Dyn. 86(1), 245–256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. D’Amico, M.B., Moiola, J.L., Paolini, E.E.: Hopf bifurcation in discrete–time systems via a frequency domain approach. In: 2000 2nd International Conference. control of oscillations and chaos. Proceedings (Cat. No.00TH8521), St. Petersburg, Russia, pp. 290–293 (2000)

  27. D’Amico, M.B., Moiola, J.L., Paolini, E.E.: Hopf bifurcation for maps: a frequency-domain approach. IEEE Trans. Autom. Control 49(3), 281–288 (2002)

    MathSciNet  MATH  Google Scholar 

  28. D’Amico, M.B., Paolini, E.E., Moiola, J.L.: Stability analysis of degenerate Hopf bifurcations for discrete-time systems. Lat. Am. Appl. Res. 33(4), 413–418 (2003)

    Google Scholar 

  29. Zeng, L., Wang, J.W.: Bifurcation analysis of maps with delay in nonlinear term via a frequency–domain approac. In: 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, pp. 30–33 (2011)

  30. Phillips, C.L., Nagle, H.T., Chakrabortty, A.: Digital Control System Analysis and Design, 4th edn. Pearson, Edinburgh (2015)

    Google Scholar 

  31. Macfarlane, A.G.J., Postlethwaite, I.: The generalized Nyquist stability criterion and multivariable root loci. Int. J. Control 25(1), 81–127 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Edmunds, J.M.: Characteristic gains, characteristic frequencies and stability. Int. J. Control 29(4), 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sauer, T.: Numerical Analysis, 2nd edn. Pearson, Boston (2011)

    Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  35. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, G.C., Abdeljawad, T., Liu, J.L., Baleanu, D., Wu, K.T.: Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 24(6), 919–936 (2019)

  37. Wang, B., Jahanshahi, H., Volos, C., Bekiros, S., Khan, M.A., Agarwal, P., Aly, A.A.: A new RBF neural network-based fault-tolerant active control for fractional time-delayed systems. Electronics 10(12), 1501 (2021)

Download references

Funding

This work was partially supported by National Natural Science Foundation of China (NSFC) (Grant No. 62076141), Natural Science Foundation of Chongqing Science and Technology Bureau (Grant No. cstc2019jcyj-msxmX0020), and Graduate Student Innovation Program of Chongqing University of Technology (Grant No. gzlcx20223305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Ethical Statement

The authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The direction of half-line staring at \(-1+{\textbf {i}}0\) can be obtained as \(\varepsilon = l_{0}\Big (l_{1}{\textrm{e}^{-{\textbf {i}}\omega \tau _{1}}}+l_{2}{\textrm{e}^{-{\textbf {i}}\omega \tau _{2}}}+l_{3} {\textrm{e}^{-{\textbf {i}}\omega ( \tau _{1}-1 ) }}+ l_{4}{\textrm{e}^{-{\textbf {i}}\omega ( \tau _{2}-1 ) }}+l_{5} {\textrm{e}^{-{\textbf {i}}\omega ( \tau _{1}-2 ) }}+l_{6} {\textrm{e}^{-{\textbf {i}}\omega ( \tau _{2}-2 ) }}+ l_{7}{\textrm{e}^{-{\textbf {i}}\omega ( \tau _{1}-3 ) }}+ l_{8} {\textrm{e}^{-{\textbf {i}}\omega ( \tau _{2}-3 ) }} \Big ) \Big / ( (6h-5)(\cos \omega -1)+4h^{2} ) ( {\textrm{e}^{{\textbf {i}}\omega }}-1+h ) ^{2} ( {\textrm{e}^{{\textbf {i}}\omega }}h-{\textrm{e}^{{\textbf {i}}\omega }}+1) ( {\textrm{e}^{{\textbf {i}}\omega }}-1+2\,h ) \), where

$$\begin{aligned}{} & {} \varphi =\frac{h e^{-{\textbf {i}}\omega \tau _{1}}(e^{{\textbf {i}}\omega }-1+2h)^{2}(e^{-{\textbf {i}}\omega }-1+2h)}{4\eta ^{3}(e^{{\textbf {i}}\omega }-1+h)^{2}(e^{-{\textbf {i}}\omega }-1+h)} \\{} & {} \quad +\frac{4h e^{-{\textbf {i}}\omega \tau _{2}}}{\eta ^{3}},\\{} & {} l_{0}=h \left( \left( 2\,h-2 \right) \cos \omega +{h}^{2}-2\,h+2 \right) ,\\{} & {} \quad l_{1}=\frac{1}{2}\left( -\frac{1}{2}+h \right) ^{2},\\{} & {} \quad l_{2}=2\left( -1+h\right) ^{2}, \\{} & {} \quad l_{3}=\left( -\frac{1}{2}+h \right) \left( {h}^{2}-h+\frac{3}{4} \right) ,\\{} & {} \quad l_{4}=2\,{h}^{3}-6\,{h}^{2}+10\,h-6, \\{} & {} \quad l_{5}={h}^{2}-h+\frac{3}{8}, \\{} & {} \quad l_{6}= 4\,{h}^{2}-8\,h+6, \\{} & {} \quad l_{7}=\frac{h}{4}-\frac{1}{8}, \\{} & {} \quad l_{8}= 2\,h-2. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, HS., Luo, C., Zhang, H. et al. Frequency domain approach to the critical step size of discrete-time recurrent neural networks. Nonlinear Dyn 111, 8467–8476 (2023). https://doi.org/10.1007/s11071-023-08278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08278-0

Keywords

Navigation