Skip to main content
Log in

On fractional coupled logistic maps: chaos analysis and fractal control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates chaotic and fractal dynamics of fractional coupled logistic maps constructed based on the Caputo fractional h-difference. The chaos of this map, affected by the memory and scale derived from the fractional operator, is examined through phase portrait, “0–1” test and Lyapunov exponent. Fractal synchronization is achieved by designing a coupled controller between Julia sets generated from two fractional coupled maps with different structures. Numerical simulations are presented to validate the main findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Such numerical calculation processes in this work takes advantage of Frédéric Moisy’s MATLAB® function shared on https://ww2.mathworks.cn/matlabcentral/fileexchange/13063-boxcount

References

  1. Yuan, J., Tung, M., Feng, D., Narducci, L.: Instability and irregular behavior of coupled logistic equations. Phys. Rev. A 28(3), 1662–1666 (1983)

    Article  MathSciNet  Google Scholar 

  2. Satoh, K., Aihara, T.: Numerical study on a coupled-logistic map as a simple model for a predator-prey system. J. Phys. Soc. Jpn. 59(4), 1184–1198 (1990)

    Article  MathSciNet  Google Scholar 

  3. Singh, U., Nandi, A., Ramaswamy, R.: Coexisting attractors in periodically modulated logistic maps. Phys. Rev. E 77(6), 066217 (2008)

    Article  MathSciNet  Google Scholar 

  4. Carvalho, R., Fernandez, B., Mendes, R.: From synchronization to multistability in two coupled quadratic maps. Phys. Lett. A 285, 327–338 (2001)

    Article  MATH  Google Scholar 

  5. Hastings, A.: Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74(5), 1362–1372 (1993)

    Article  Google Scholar 

  6. Yoshida, K., Saito, S.: Analytical study of the Julia set of a coupled generalized logistic map. J. Phys. Soc. Jpn. 68(5), 1513–1525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Isaeva, O., Kuznetsov, S., Ponomarenko, V.: Mandelbrot set in coupled logistic maps and in an electronic experiment. Phys. Rev. E 64, 055201 (2001)

    Article  Google Scholar 

  8. Ferretti, A., Rahman, N.: A study of coupled logistic map and its applications in chemical physics. Chem. Phys. 119, 275–288 (1988)

    Article  MathSciNet  Google Scholar 

  9. Parthasarathy, S., Güémez, J.: Synchronisation of chaotic metapopulations in a cascade of coupled logistic map models. Ecol. Model. 106, 17–25 (1998)

    Article  Google Scholar 

  10. Elsadany, A., Yousef, A., Elsonbaty, A.: Further analytical bifurcation analysis and applications of coupled logistic maps. Appl. Math. Comput. 338, 314–336 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Wang, X., Guan, N.: 2D sine-logistic-tent-coupling map for image encryption. J. Ambient Intell. Human. Comput. (2022). https://doi.org/10.1007/s12652-022-03794-0

    Article  Google Scholar 

  12. Bao, B., Rong, K., Li, H., Li, K., Hua, Z., Zhang, X.: Memristor-coupled logistic hyperchaotic map. IEEE Trans. Circuits Syst. II Express Briefs 68(8), 2992–2996 (2021)

    Google Scholar 

  13. Wu, G., Luo, M., Huang, L., Banerjee, S.: Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dyn. 100, 3611–3623 (2020)

    Article  Google Scholar 

  14. Huang, L., Park, J., Wu, G., Mo, Z.: Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 370, 112633 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chu, Y., Bekiros, S., Zambrano-Serrano, E., Orozco-López, O., Lahmiri, S., Jahanshahi, H., Aly, A.: Artificial macro-economics: a chaotic discrete-time fractional-order, laboratory model. Chaos Solitons Fract. 145, 110776 (2021)

    Article  MathSciNet  Google Scholar 

  16. Edelman, M.: Evolution of systems with power-law memory: Do we have to die? In: Demography of Population Health, Aging and Health Expenditures, pp. 65–85. Springer, Cham (2020)

    Chapter  Google Scholar 

  17. Khan, A., Alshehri, H., Abdeljawad, T., Al-Mdallal, Q., Khan, H.: Stability analysis of fractional nabla difference COVID-19 model. Results Phys. 22, 103888 (2021)

    Article  Google Scholar 

  18. Tianming, L., Jun, M., Hadi, J., Huizhen, Y., Yinghong, C.: A class of fractional-order discrete map with multistability and its digital circuit realization. Phys. Scr. 97, 075201 (2022)

    Article  Google Scholar 

  19. Pisarchik, N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagai, A.: Fractional logistic map. arXiv:nlin/0206018v1

  21. Wu, G., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, G., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)

    Article  Google Scholar 

  23. Wu, G., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80(4), 1697–1703 (2015)

    Article  MathSciNet  Google Scholar 

  24. Edelman, M.: On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grënvald-Letnikov fractional difference (differential) equations. Chaos 25, 073103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edelman, M.: On stability of fixed points and chaos in fractional systems. Chaos 28(2), 023112 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Edelman, M., Macau, E., Sanjuan, M.: Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  27. Wang, Y., Liu, S., Li, H.: On fractional difference logistic maps: dynamic analysis and synchronous control. Nonlinear Dyn. 102(1), 579–588 (2020)

    Article  Google Scholar 

  28. Wang, Y., Liu, S., Li, H.: New fractal sets coined from fractional maps. Fractals 29(8), 2150270 (2021)

    Article  MATH  Google Scholar 

  29. Wang, Y., Li, X., Wang, D., Liu, S.: A brief note on fractal dynamics of fractional Mandelbrot sets. Appl. Math. Comput. 432, 127353 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Danca, M., Fečkan, M., Kuznetsov, N., Chen, G.: Coupled discrete fractional-order logistic maps. Mathematics 9, 2204 (2021)

    Article  Google Scholar 

  31. Bastos, N., Ferreira, R., Torres, D.: Discrete-time fractional variational problems. Signal Process. 91(3), 513–524 (2011)

    Article  MATH  Google Scholar 

  32. Ferreira, R., Torres, D.: Fractional \(h\)-difference equations arising from the calculus of variations. Appl. Anal. Discr. Math. 5, 110–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of \(h\)-difference fractional operators. In: Advances in the Theory and Applications of Non-integer Order Systems, pp. 191–197. Springer, Heidelberg (2013)

    Chapter  MATH  Google Scholar 

  34. Mozyrska, D., Girejko, E.: Overview of fractional \(h\)-difference operators. In: Advances in Harmonic Analysis and Operator Theory, pp. 253–268. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  35. Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  36. Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing. World Scientific, Berlin (2015)

    MATH  Google Scholar 

  37. Wu, G., Baleanu, D., Deng, Z., Zeng, S.: Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Phys. A 438, 335–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, G., Baleanu, D., Zeng, S., Deng, Z.: Discrete fractional diffusion equation. Nonlinear Dyn. 80, 281–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Baleanu, D., Wu, G., Bai, Y., Chen, F.: Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48, 520–530 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, X., Ma, L.: Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems. Appl. Math. Comput. 385, 125423 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Gottwald, G., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Y., Liu, S.: Fractal analysis and control of the fractional Lotka–Volterra model. Nonlinear Dyn. 95(2), 1457–1470 (2019)

    Article  MATH  Google Scholar 

  44. Wang, Y., Liu, S., Wang, W.: Fractal dimension analysis and control of Julia set generated by fractional Lotka–Volterra models. Commun. Nonlinear Sci. Numer. Simul. 72, 417–431 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Y., Liu, S., Li, H., Wang, D.: On the spatial Julia set generated by fractional Lotka–Volterra system with noise. Chaos Solitons Fract. 128, 129–138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Barnsley, M., Devaney, R., Mandelbrot, B., Peitgen, H., Saupe, D., Voss, R.: The Science of Fractal Images. Springer, New York (1988)

  47. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley and Sons Ltd, Chichester (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript. The first author is also indebted to Dr. Hui Li for numerous helpful discussions.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62203283, U1806203 and 61533011), Shandong Provincial Natural Science Foundation (Grant No. ZR2022QF009) and the China Postdoctoral Science Foundation (Grant No. 2022M711981).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yupin Wang, Shutang Liu and Aziz Khan. The first draft of the manuscript was written by Yupin Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yupin Wang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pseudo-code

figure a
figure b

Appendix B: Program script

The MATLAB® code for phase portraits of FCLM (2).

figure c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, S. & Khan, A. On fractional coupled logistic maps: chaos analysis and fractal control. Nonlinear Dyn 111, 5889–5904 (2023). https://doi.org/10.1007/s11071-022-08141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08141-8

Keywords

Mathematics Subject Classification

Navigation