Skip to main content
Log in

Position and stiffness control of an antagonistic variable stiffness actuator with input delay using super-twisting sliding mode control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Motor dynamics in antagonistic variable stiffness actuator (AVSA) is generally disregarded in control system design. This ignorance can lead to an inaccurate system model, affecting the performance of the closed-loop system. The motor dynamics can be modeled as an input-delay in actuator model. In this paper, the motor dynamics is modeled as the input time-delay for an AVSA for the first time. The stiffness of AVSA is a nonlinear function of system states; thus, stiffness tracking for an AVSA is a challenging task. Specifically, many of the existing delay compensation controllers cannot be used for stiffness tracking when the model contains input delay. To handle this issue, a nonlinear transformation is introduced and a super-twisting sliding mode control is then utilized to reach position and stiffness tracking simultaneously. Prediction-based feedback is involved together with some disturbance observers for estimating the external disturbance to compensate for the input time-delay. Simulation results show that the proposed design approach is successful in position and stiffness tracking and simultaneously in attenuating the external disturbance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abidi, K., Postlethwaite, I.: Discrete-time adaptive control for systems with input time-delay and non-sector bounded nonlinear functions. IEEE Access 7, 4327–4337 (2019). https://doi.org/10.1109/ACCESS.2018.2885077

  2. Bi, S.S., Liu, C., Zhao, H.Z., Wang, Y.L.: Design and analysis of a novel variable stiffness actuator based on parallel-assembled-folded serial leaf springs. Adv. Robot. 31(18), 990–1001 (2017). https://doi.org/10.1080/01691864.2017.1390495

    Article  Google Scholar 

  3. Best, C.M., Rupert, Levi, Killpack, Marc D.: Comparing model based control methods for simultaneous stiffness and position control of inflatable soft robots. Int. J. Robot. Res. 40(1), 470–493 (2020). https://doi.org/10.1177/0278364920911960

  4. Chaichaowarat, R., Kinugawa, J., Kosuge, K.: Cycling-enhanced knee exoskeleton using planar spiral spring. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–6 (2018). https://doi.org/10.1109/EMBC.2018.8512862

  5. Chaichaowarat, R., Nishimura, S., Krebs, H.I.: Design and modeling of a variable-stiffness spring mechanism for impedance modulation in physical human-robot interaction. In: 2021 IEEE international conference on robotics and automation (ICRA), pp. 7052–7057 (2021). https://doi.org/10.1109/ICRA48506.2021.9560966

  6. Chaichaowarat, R., Nishimura, S., Krebs, H.I.: Macro-mini linear actuator using electrorheological-fluid brake for impedance modulation in physical human-robot interaction. IEEE Robot. Autom. Lett. 7(2), 2945–2952 (2022). https://doi.org/10.1109/LRA.2022.3145050

    Article  Google Scholar 

  7. Flacco, F., De Luca, A., Sardellitti, I., Tsagarakis, N.G.: On-line estimation of variable stiffness in flexible robot joints. Int. J. Robot. Res. 31(13), 1556–1577 (2012). https://doi.org/10.1177/0278364912461813

    Article  Google Scholar 

  8. Fridman, E.: Introduction to Time-delay Systems: Analysis and Control. Springer (2014)

  9. Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet, E., Caldwell, D., Carloni, R., Friedl, W., Grebenstein, M., Laffranchi, M., Lefeber, D., Stramigioli, S., Tsagarakis, N., van Damme, M., Vanderborght, B., Albu-Schaeffer, A., Bicchi, A.: Variable stiffness actuators: the user’s point of view. Int. J. Robot. Res. 34(6), 727–743 (2015). https://doi.org/10.1177/0278364914566515

    Article  Google Scholar 

  10. Groothuis, S.S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R.: The variable stiffness actuator vsaUT-ii: Mechanical design, modeling, and identification. IEEE/ASME Trans. Mechatron. 19(2), 589–597 (2014). https://doi.org/10.1109/TMECH.2013.2251894

    Article  Google Scholar 

  11. Guo, J., Tian, G.: Mechanical design and analysis of the novel 6-DOF variable stiffness robot arm based on antagonistic driven joints. J. Intell. Robot. Syst. 82(2), 207–235 (2016). https://doi.org/10.1007/s10846-015-0279-y

    Article  Google Scholar 

  12. Guo, J., Tian, G.: Mechanical design and robust tracking control of a class of antagonistic variable stiffness actuators based on the equivalent nonlinear torsion springs. Proceedings of the Institution of Mechanical Engineers, Part I: J. Syst. Control Eng. 232(10), 1337–1355 (2018). https://doi.org/10.1177/0959651818781272

  13. Hussain, I., Albalasie, A., Awad, M.I., Seneviratne, L., Gan, D.: Modeling, control, and numerical simulations of a novel binary-controlled variable stiffness actuator (BcVSA). Front. Robot. AI (2018). https://doi.org/10.3389/frobt.2018.00068

    Article  Google Scholar 

  14. Jabbari Asl, H., Narikiyo, T.: Output feedback control of an uncertain input-delayed nonlinear system with bounded control commands. J. Frankl. Inst. (2022). https://doi.org/10.1016/j.jfranklin.2022.06.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Jafari, A., Tsagarakis, N., Caldwell, D.: Energy efficient actuators with adjustable stiffness: a review on AwAS, AwAS-ii and compACT VSA changing stiffness based on lever mechanism. Ind. Robot Int. J. 42(3), 242–251 (2015). https://doi.org/10.1108/IR-12-2014-0433

    Article  Google Scholar 

  16. Javadi, A., Jahed-Motlagh, M.R., Jalali, A.A.: Input delay compensation of nonlinear stochastic systems with both state and input delays by prediction approach. Int. J. Syst. Sci. 48(14), 3007–3017 (2017). https://doi.org/10.1080/00207721.2017.1367048

    Article  MathSciNet  MATH  Google Scholar 

  17. Karafyllis, I., Krstic, M.: Predictor Feedback for Delay Systems: Implementations and Approximations. Springer (2017)

    Book  MATH  Google Scholar 

  18. Khazaee, M., Markazi, A.H., Omidi, E.: Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay. ISA Trans. 59, 314–324 (2015). https://doi.org/10.1016/j.isatra.2015.10.010

    Article  Google Scholar 

  19. Khazaee, M., Markazi, A.H.D., Rizi, S.T., Seyfi, B.: Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback. Nonlinear Dyn. 87(3), 1943–1956 (2017). https://doi.org/10.1007/s11071-016-3164-8

    Article  MATH  Google Scholar 

  20. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Springer (2009)

    Book  MATH  Google Scholar 

  21. Lee, H., Hogan, N.: Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 755–764 (2015). https://doi.org/10.1109/TNSRE.2014.2346927

    Article  Google Scholar 

  22. Lee, J., Lee, C., Tsagarakis, N., Oh, S.: Residual-based external torque estimation in series elastic actuators over a wide stiffness range: frequency domain approach. IEEE Robot. Autom. Lett. 3(3), 1442–1449 (2018). https://doi.org/10.1109/LRA.2018.2800128

    Article  Google Scholar 

  23. Lei, J., Khalil, H.K.: High-gain-predictor-based output feedback control for time-delay nonlinear systems. Automatica 71, 324–333 (2016). https://doi.org/10.1016/j.automatica.2016.05.026

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Chen, W., Lin, W.: Design of a structure-controlled variable stiffness actuator based on rotary flexure hinges. In: 2017 IEEE international conference on robotics and automation (ICRA), pp. 45–50 (2017). https://doi.org/10.1109/ICRA.2017.7988689

  25. Liu, L., Hong, Z., Penzlin, B., Misgeld, B.J.E., Ngo, C., Bergmann, L., Leonhardt, S.: Low impedance-guaranteed gain-scheduled GESO for torque-controlled VSA with application of exoskeleton-assisted sit-to-stand. IEEE/ASME Trans. Mechatron. 26(4), 2080–2091 (2021). https://doi.org/10.1109/TMECH.2020.3032372

    Article  Google Scholar 

  26. Liu, L., Leonhardt, S., Ngo, C., Misgeld, B.J.E.: Impedance-controlled variable stiffness actuator for lower limb robot applications. IEEE Trans. Autom. Sci. Eng. 17(2), 991–1004 (2020). https://doi.org/10.1109/TASE.2019.2954769

    Article  Google Scholar 

  27. Lu, H., Zhang, X., Huang, X.: Robust adaptive control of antagonistic tendon-driven joint in the presence of parameter uncertainties and external disturbances. J. Dyn. Syst. Meas. Control (2017). https://doi.org/10.1115/1.4036364

    Article  Google Scholar 

  28. Lugo Calles, J.H., Caligiuri, A., Zoppi, M., Molfino, R., Cannata, G.: Simultaneous position and stiffness control of a revolute joint using a biphasic media variable stiffness actuator. Int. J. Robot. Comput. (2020) https://doi.org/10.35708/RC1868-126252

  29. Lukic, B., Jovanovic, K., Sekara, T.B.: Cascade control of antagonistic VSA-an engineering control approach to a bioinspired robot actuator. Front. Neurorobot. (2019). https://doi.org/10.3389/fnbot.2019.00069

    Article  Google Scholar 

  30. Misgeld, B.J.E., Hewing, L., Liu, L., Leonhardt, S.: Closed-loop positive real optimal control of variable stiffness actuators. Control Eng. Pract. 82, 142–150 (2019). https://doi.org/10.1016/j.conengprac.2018.08.022

    Article  Google Scholar 

  31. Mo, L., Feng, P., Shao, Y., Shi, D., Ju, L., Zhang, W., Ding, X.: Anti disturbance sliding mode control of a novel variable stiffness actuator for the rehabilitation of neurologically disabled patients. Front. Robot. AI (2022). https://doi.org/10.3389/frobt.2022.864684

    Article  Google Scholar 

  32. Moosapour, S.H., Ataei, M., Ekramian, M.: Prediction-based sliding mode control of non-linear systems with input delay using disturbance observer. IET Control Theory Appl. 13(13), 2047–2055 (2019). https://doi.org/10.1049/iet-cta.2018.5706

    Article  MathSciNet  Google Scholar 

  33. Moosapour, S.H., Ataei, M., Shim, H., Ekramian, M.: Asymptotic stabilization of a class of nonlinear systems with long input delay in the presence of disturbance. ISA Trans. 91, 125–134 (2019). https://doi.org/10.1016/j.isatra.2019.01.040

    Article  Google Scholar 

  34. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012). https://doi.org/10.1109/TAC.2012.2186179

    Article  MathSciNet  MATH  Google Scholar 

  35. Nishimura, S., Chaichaowarat, R., Krebs, H.I.: Human-robot interaction: controller design and stability. In: 2020 8th IEEE RAS/EMBS international conference for biomedical robotics and biomechatronics (BioRob), pp. 1096–1101 (2020). https://doi.org/10.1109/BioRob49111.2020.9224464

  36. Obuz, S., Klotz, J.R., Kamalapurkar, R., Dixon, W.: Unknown time-varying input delay compensation for uncertain nonlinear systems. Automatica 76, 222–229 (2017). https://doi.org/10.1016/j.automatica.2016.09.030

    Article  MathSciNet  MATH  Google Scholar 

  37. Palli, G., Pan, L., Hosseini, M., Moriello, L., Melchiorri, C.: Feedback linearization of variable stiffness joints based on twisted string actuators. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 2742–2747. https://doi.org/10.1109/ICRA.2015.7139571

  38. Pham, A.D., Ahn, H.J.: Rigid precision reducers for machining industrial robots. Int. J. Precis. Eng. Manuf. 22(8), 1469–1486 (2021). https://doi.org/10.1007/s12541-021-00552-8

    Article  Google Scholar 

  39. Roozing, W., Li, Z., Medrano-Cerda, G.A., Caldwell, D.G., Tsagarakis, N.G.: Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Trans. Mechatron. 21(2), 1080–1091 (2016). https://doi.org/10.1109/TMECH.2015.2493359

    Article  Google Scholar 

  40. Shao, Y., Zhang, W., Su, Y., Ding, X.: Design and optimisation of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mech. Mach. Theory 161, 104323 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104323

    Article  Google Scholar 

  41. She, Y., Gu, Z., Song, S., Su, H.J., Wang, J.: A continuously tunable stiffness arm with cable-driven mechanisms for safe physical human-robot interaction (2020). https://doi.org/10.1115/DETC2020-22035. V010T10A060

  42. Shtessel, Y., Edwards, C., Fridman, L., Levant, A., et al.: Sliding Mode Control and Observation, vol. 10. Springer (2014)

    Book  Google Scholar 

  43. Sun, J., Guo, Z., Sun, D., He, S., Xiao, X.: Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech. Mach. Theory 130, 123–136 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.07.024

    Article  Google Scholar 

  44. Sun, J., Guo, Z., Zhang, Y., Xiao, X., Tan, J.: A novel design of serial variable stiffness actuator based on an Archimedean spiral relocation mechanism. IEEE/ASME Trans. Mechatron. 23(5), 2121–2131 (2018). https://doi.org/10.1109/TMECH.2018.2854742

    Article  Google Scholar 

  45. Trumic, M., Jovanovic, K., Fagiolini, A.: Decoupled nonlinear adaptive control of position and stiffness for pneumatic soft robots. Int. J. Robot. Res. 40(1), 277–295 (2020). https://doi.org/10.1177/0278364920903787

    Article  Google Scholar 

  46. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013). https://doi.org/10.1016/j.automatica.2012.09.008

    Article  MathSciNet  MATH  Google Scholar 

  47. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  48. Wang, T., Zhang, B., Liu, C., Liu, T., Han, Y., Wang, S., Ferreira, J.P., Dong, W., Zhang, X.: A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled. Electronics (2022). https://doi.org/10.3390/electronics11030388

    Article  Google Scholar 

  49. Wu, Y.S., Lan, C.C.: Linear variable-stiffness mechanisms based on preloaded curved beams. J. Mech. Des. (2014). https://doi.org/10.1115/1.4028705

    Article  Google Scholar 

  50. Zhang, J., Gao, Q., Wu, J.Z., Tao, J.: The study on mechanical impedance and piezoelectric impedance for cantilever beam based on FEA method. Adv. Mater. Res. 368–373, 1346–1350 (2012). https://doi.org/10.4028/www.scientific.net/AMR.368-373.1346

    Article  Google Scholar 

  51. Zhu, Y., Wu, Q., Chen, B., Xu, D., Shao, Z.: Design and evaluation of a novel torque-controllable variable stiffness actuator with reconfigurability. IEEE/ASME Trans. Mechatron. 27(1), 292–303 (2022). https://doi.org/10.1109/TMECH.2021.3063374

Download references

Acknowledgements

This research project is supported by the Second Century Fund (C2F), Chulalongkorn University, and funded by Thailand Science Research and Innovation Fund, Chulalongkorn University (CU_FRB65_ind (14)_162_21_28). The authors would also like to thank Dr. Guohui Tian for his help and support in the simulation and comparison phase of the research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnapee Chaichaowarat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, A., Chaichaowarat, R. Position and stiffness control of an antagonistic variable stiffness actuator with input delay using super-twisting sliding mode control. Nonlinear Dyn 111, 5359–5381 (2023). https://doi.org/10.1007/s11071-022-08123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08123-w

Keywords

Navigation