Skip to main content
Log in

The vector soliton of the (3+1)-dimensional Gross–Pitaevskii equation with variable coefficients

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a variable coefficient (3+1)-dimensional Gross–Pitaevskii equation is used to study the propagation properties of solitons in Bose–Einstein condensation, as well as the influence of nonlinear terms of time modulation on the properties of solitons. Under reasonable assumptions, the 1-, 2-, 3-soliton solutions of Gross–Pitaevskii equation are constructed by Hirota bilinear method. The results indicate that they can be transformed into special soliton solutions (bright, dark and periodic) under certain conditions. On this basis, the figures of various soliton solutions are displayed, and the influence of coefficient function on soliton solutions is discussed. It is found that the influence of variable coefficients on the physical quantities of several types of soliton solutions has different emphases, and specific laws of influence are derived. In addition, in order to better understand the dynamic properties of soliton solutions, the asymptotic behavior of 2-, 3-soliton solutions is analyzed. Our research can provide a theoretical basis for the dynamics problem in Bose–Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data are available within the article or its supplementary materials. We confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Wen, X., Wang, D.: Odd-soliton solutions and inelastic interaction for the differential-difference nonlinear Schrödinger equation in nonlinear optics. Appl. Math. Comput. 244, 598–605 (2014). https://doi.org/10.1016/j.amc.2014.07.027

    Article  MathSciNet  MATH  Google Scholar 

  2. Kundu, P., Almusawa, H., Fahim, M., et al.: Linear and nonlinear effects analysis on wave profiles in optics and quantum physics. Results. Phys. 23, 103995 (2021). https://doi.org/10.1016/j.rinp.2021.103995

    Article  Google Scholar 

  3. Wiegmann, P.: Non-Linear hydrodynamics and Fractionally Quantized Solitons at Fractional Quantum Hall Edge. Phys. Rev. Lett. 108(20), 206810 (2011). https://doi.org/10.1103/PhysRevLett.108.206810

    Article  Google Scholar 

  4. Yu, F., Fan, R.: Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations. Appl. Math. Lett. 103, 106209 (2020). https://doi.org/10.1016/j.aml.2020.106209

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng, W., Tian, S., Wang, X., et al.: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019). https://doi.org/10.1016/j.geomphys.2019.103508

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, Y., Liu, Y., Tang, X.: A general integrable three-component coupled nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 89(4), 2729–2738 (2017). https://doi.org/10.1007/s11071-017-3621-z

    Article  Google Scholar 

  7. Hasegawa, A., Kodama, Y.: Solitons in optical communications. Clarendon Press, Oxford (1995)

  8. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  9. Subramanian, K., Alagesan, T., Mahalingam, A., et al.: Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dyn. 87(3), 1575–1587 (2017). https://doi.org/10.1007/s11071-016-3134-1

    Article  Google Scholar 

  10. Manakov, S.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. J. Exp. Theor. Phys. 38(2), 248 (1974)

  11. Radhakrishnan, R., Lakshmanan, M.: Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects. Phys. Rev. E 54(3), 2949 (1996). https://doi.org/10.1103/PhysRevE.54.2949

    Article  MathSciNet  Google Scholar 

  12. Chen, J., Feng, B.F., Chen, Y., et al.: General bright-dark soliton solution to (2+1)-dimensional multi-component long-wave-short-wave resonance interaction system. Nonlinear Dyn. 88(2), 1273–1288 (2017). https://doi.org/10.1007/s11071-016-3309-9

    Article  MATH  Google Scholar 

  13. Park, Q., Shin, H.: Systematic construction of multicomponent optical solitons. Phys. Rev. E 61(3), 3093 (2000). https://doi.org/10.1103/physreve.61.3093

    Article  MathSciNet  Google Scholar 

  14. Kivshar, Y., Alexander, T., Turitsyn, S.: Nonlinear modes of a macroscopic quantum oscillator. Phys. Lett. A 278(4), 225–230 (2001). https://doi.org/10.1016/S0375-9601(00)00774-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Schumayer, D., Apagyi, B.: Stability of static solitonic excitations of two-component Bose–Einstein condensates in finite range of interspecies scattering length a 12. Phys. Rev. A 69(4), 043620 (2004). https://doi.org/10.1103/PhysRevA.69.043620

    Article  Google Scholar 

  16. Yu, F.: Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross–Pitaevskii equation with PT-symmetric external potentials. Appl. Math. Lett. 92, 108–114 (2019). https://doi.org/10.1016/j.aml.2019.01.010

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H., Zhou, Q., Biswas, A., et al.: Localized waves and mixed interaction solutions with dynamical analysis to the Gross–Pitaevskii equation in the Bose–Einstein condensate. Nonlinear Dyn. 106(1), 841–854 (2021)

    Article  Google Scholar 

  18. Yan, Z., Chen, Y., Wen, Z.: On stable solitons and interactions of the generalized Gross–Pitaevskii equation with PT-and non-PT-symmetric potentials. Chaos 26(8), 083109 (2016). https://doi.org/10.1063/1.4960612

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Z., Tian, B., Wang, M., et al.: Integrability and multi-soliton solutions for a variable-coefficient coupled Gross–Pitaevskii System for atomic MatterWaves. Z. Naturforsch. A. 67(10–11), 525–533 (2012). https://doi.org/10.5560/zna.2012-0044

    Article  Google Scholar 

  20. Tian, B., Wang, Y., Wang, Y., et al.: Symbolic-computation study of bright solitons in the optical waveguides and Bose–Einstein condensates. Phys. Scr. 90(6), 065204 (2015). https://doi.org/10.1088/0031-8949/90/6/065204

    Article  Google Scholar 

  21. Geng, X., Wang, K., Chen, M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611 (2021). https://doi.org/10.1007/s00220-021-03945-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by Key R& D program of Shanxi Province (International Cooperation, 201903D421042). Research Project Supported by Shanxi Scholarship Council of China (2021-030). This paper is supported by Shanxi Youth Scientific Research Project. The Project Number is 202103021223060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, LL. The vector soliton of the (3+1)-dimensional Gross–Pitaevskii equation with variable coefficients. Nonlinear Dyn 111, 5693–5708 (2023). https://doi.org/10.1007/s11071-022-08121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08121-y

Keywords

Navigation