Skip to main content
Log in

Solitary waves and chaos in nearly compressible thermo-hyperelastic cylinder

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Solitary waves in hyperelastic structures propagate stably in absence of external forces. However, as the external forces increase, the stability of solitary waves may lose and then chaotic behaviors may appear. In this paper, solitary waves and chaotic motions of an infinitely long cylinder with an internal heat source are investigated. Moreover, the cylinder is composed of nearly compressible thermo-hyperelastic neo-Hookean materials. Based on the variational principle, in a non-uniform steady-state temperature field and under a uniformly distributed radial periodic load, a mathematical model describing motions of the infinite cylinder is established. The governing equations are analyzed by qualitative and bifurcation theorems. The effects of structure boundary temperature on the qualitative properties of traveling waves are examined, and the types of traveling waves are identified. By using Melnikov functions, the sufficient conditions for chaos are derived. Numerical simulations of Lyapunov exponents, bifurcation diagrams, trajectories, and time travel curves are presented to illustrate the process of the associated dynamical system from order to chaotic motions in some bifurcation sets. The numerical results are consistent with those of the theoretical analysis. The thresholds of physical parameters and sufficient conditions for chaos may provide critical information for nondestructive testing of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Leng, D.X., Xu, K., Qin, L.P., Ma, Y., Liu, G.J.: A hyper-elastic creep approach and characterization analysis for rubber vibration systems. Polymers 11(6), 988 (2019)

    Article  Google Scholar 

  2. Khalajmasoumi, M., Koloor, S.S.R., Arefnia, A., Ibrahim, I.S., Mohd Yatim, J.: Hyperelastic analysis of high density polyethylene under monotonic compressive load. Appl. Mech. Mater. 229, 309–313 (2012)

    Article  Google Scholar 

  3. Michopoulos, A., Kyriakis, N.: A new energy analysis tool for ground source heat pump systems. Energy Build. 41(9), 937–941 (2009)

    Article  Google Scholar 

  4. Ingersoll, L.R.: Theory of the ground pipe heat source for the heat pump. Heat. Pip. Air Cond. 20, 119–122 (1948)

    Google Scholar 

  5. Kavanaugh, S. P.: Simulation and experimental verification of vertical ground-coupled heat pump systems, Ph. D. dissertation, Oklahoma State University, Stillwater (1985)

  6. Yi, M., Yang, H., Diao, N., Liu, J., Fang, Z.: A new model and analytical solutions for borehole and pile ground heat exchangers. Int. J. Heat Mass Tran. 53(13–14), 2593–2601 (2010)

    MATH  Google Scholar 

  7. Broda, D., Staszewski, W.J., Martowicz, A., Uhl, T., Silberschmidt, V.V.: Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound-a review. J. Sound Vib. 333(4), 1097–1118 (2014)

    Article  Google Scholar 

  8. Ding, X.M., Luan, L.B., Zheng, C.J., Mei, G.X., Zhou, H.: An analytical solution for wave propagation in a pipe pile with multiple defects. Acta Mech. Solida Sin. 33(2), 251–267 (2020)

    Article  Google Scholar 

  9. Yu, Z.X., Xu, C., Du, F., Cao, S.C., Gu, L.X.: Time-domain spectral finite element method for wave propagation analysis in structures with breathing cracks. Acta Mech. Solida Sin. 33, 812–822 (2020)

    Article  Google Scholar 

  10. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Z.G., Zhang, J.L., Wang, Y.S., Huang, G.L.: Analytical solutions of solitary waves and their collision stability in a pre-compressed one-dimensional granular crystal. Nonlinear Dyn. 104, 4293–4309 (2021)

    Article  Google Scholar 

  12. Zhang, N.M., Yang, G.T.: Solitary waves and chaos in nonlinear visco-elastic rod. Eur. J. Mech. 22(6), 917–923 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, G.H., Zhang, N.M., Yang, G.T.: Nonlinear complex dynamic phenomena of the perturbed metallic bar considering dissipating effect. Appl. Math. Mech.-Engl. 26(2), 142–149 (2005)

    Article  MATH  Google Scholar 

  14. Wright, T.W.: Nonlinear waves in a rod: results for incompressible elastic materials. Stud. Appl. Math. 72(2), 149–160 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, H., Dai, H.H.: Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves. Acta Mech. 100(3), 223–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai, H.H., Fan, X.: Asmptoticaliy approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations. Math. Mech. Solids. 9(1), 61–79 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Z., Long, Y.: Generalized kink waves in a general compressible hyperelastic rod. Int. J. Bifurc. Chaos 15(8), 2671–2679 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rushchitsky, J.J.: Quadratically nonlinear cylindrical hyperelastic waves: primary analysis of evolution. Int. Appl. Mech. 41(7), 770–777 (2005)

    Article  Google Scholar 

  19. Motaghian, S., Rahimian, M.: Nonlinear traveling wave propagation in a neo-Hookean cylindrical rod with torsional eigenstrain. Int. J. Nonlinear Mech. 120, 103411 (2020)

    Article  Google Scholar 

  20. Motaghian, S., Rahimian, M.: The effects of axisymmetric radial, circumferential and longitudinal eigenstrains on the traveling wave solution in a neo-Hookean cylindrical rod. Int. J. Solids Struct. 219, 81–91 (2021)

    Article  Google Scholar 

  21. Chen, R.M.: Some nonlinear dispersive waves arising in compressible hyperelastic plates. Int. J. Eng. Sci 44(18–19), 1188–1204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shearer, T., Abrahams, I.D., Parnell, J.W., Daros, H.C.: Torsional wave propagation in a pre-stressed hyperelastic annular circular cylinder. Q. J. Mech. Appl. Math. 66(4), 465–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, L., Wang, J., Shchepakina, E., Sobolev, V.: New type of solitary wave solutions with coexisting crest and trough for a perturbed wave equation. Nonlinear Dyn. 106, 3479–3493 (2021)

    Article  Google Scholar 

  24. Chen, L.L., Chang, Z., Qin, T.Y.: Elastic wave propagation in simple-sheared hyperelastic materials with different constitutive models. Int. J. Solids Struct. 126, 1–7 (2017)

    Google Scholar 

  25. Cheviakov, A.F., Ganghoffer, J.F., Jean, S.S.: Fully non-linear wave models in fiber-reinforced anisotropic incompressible hyperelastic solids. Int. J. Nonlinear Mech. 71, 8–21 (2015)

    Article  Google Scholar 

  26. Galich, P.I., Slesarenko, V., Li, J., Rudykh, S.: Elastic instabilities and shear waves in hyperelastic composites with various periodic fiber arrangements. Int. J. Eng. Sci. 130, 51–61 (2018)

    Article  MATH  Google Scholar 

  27. Il’ichev, A.T., Shargatov, V.A., Fu, Y.B.: Characterization and dynamical stability of fully nonlinear strain solitary waves in a fluid-filled hyperelastic membrane tube. Acta Mech. 231(10), 4095–4110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheviakov, A., Lee, C., Naz, R.: Radial waves in fiber-reinforced axially symmetric hyperelastic media. Commun. Nonlinear Sci. 95, 105649 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xin, F.X., Lu, T.J.: Self-controlled wave propagation in hyperelastic media. Sci. Rep. 7, 7581 (2017)

    Article  Google Scholar 

  30. Wang, R., Ding, H., Yuan, X.G., Lv, N., Chen, L.Q.: Different types of solitary waves in a thermo-hyperelastic neo-Hookean cylindrical shell. Compos. Struct. 243, 112178 (2020)

    Article  Google Scholar 

  31. Wang, R., Ding, H., Yuan, X.G., Lv, N., Chen, L.Q.: Nonlinear singular traveling waves in a slightly compressible thermo-hyperelastic cylindrical shell. Nonlinear Dyn. 107, 1495–1509 (2022)

    Article  Google Scholar 

  32. Li, J., Slesarenko, V., Rudykh, S.: Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. Eur. J. Mech. A-Solid. 73, 126–136 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramabathiran, A.A., Gopalakrishnan, S.: Time and frequency domain finite element models for axial wave analysis in hyperelastic rods. Mech. Adv. Mater. Struc. 19, 79–99 (2012)

    Article  Google Scholar 

  34. Vallikivi, M., Salupere, A., Dai, H.H.: Numerical simulation of propagation of solitary deformation waves in a compressible hyperelastic rod. Math. Comput. Simulat. 82, 1348–1362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Naranjo-Pérez, J., Riveiro, M., Callejas, A., Gus, G., Melchor, J.: Nonlinear torsional wave propagation in cylindrical coordinates to assess biomechanical parameters. J. Sound Vib. 445, 103–116 (2019)

    Article  Google Scholar 

  36. Rauter, N., Lammering, R.: Investigation of the higher harmonic lamb wave generation in hyperelastic isotropic material. Phys. Procedia. 70, 309–313 (2015)

    Article  Google Scholar 

  37. Li, G.Y., He, Q., Mangan, R., Xu, G.Q., Mo, C., Luo, J.W., Michel, D., Cao, Y.P.: Guided waves in pre-stressed hyperelastic plates and tubes: application to the ultrasound elastography of thin-walled soft materials. J. Mech. Phys. Solids. 102, 67–79 (2017)

    Article  MathSciNet  Google Scholar 

  38. Mirparizi, M., Fotuhi, A.R.: Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain. Phys. A. 537, 122755 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cheng, L.L.: Numerical modeling of flow and scour below a pipeline in currents: part I flow simulation. Coast. Eng. 52(1), 25–42 (2005)

    Article  Google Scholar 

  40. Nicholson, D.W., Lin, B.: Theory of thermohyperelasticity for near-incompressible elastomers. Acta Mech. 116, 15–28 (1996)

    Article  MATH  Google Scholar 

  41. Bechir, H., Benslimane, A.: On the propagation of weak shock waves in compressible thermohyperelastic solids. Acta Mech. 229(1), 87–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, H., Tang, Y.: Thermal conductivity of carbon nanotube/natural rubber composite from molecular dynamics simulations. J. Theor. Comput. Chem. 12(3), 1350011 (2013)

    Article  Google Scholar 

  43. Xu, F., Guo, G., Hu, K., Han, S.Y., Ma, X.N., Li, Z.S.: The research on heat transfer of combustible porous media with inner heat source. Pe. Ind. Appl. 31(2), 28–32 (2012)

    Google Scholar 

  44. Jin, H.: Design and construction of a large-diameter crude oil pipeline in Northeastern China: a special issue on permafrost pipeline. Cold Reg. Sci. Technol. 64(3), 209–212 (2010)

    Article  Google Scholar 

  45. Pu, Q., Li, K., Gao, F.P.: Scour of the seabed under a pipeline in oscillating flow. China Ocean Eng. 15(1), 129–137 (2001)

    Google Scholar 

  46. Cao, H., Chi, X., Chen, G.: Suppressing or inducing chaos in a model of robot arms and mechanical manipulators. J. Sound Vib. 271(3–5), 705–724 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Amabili, M., Balasubramanian, P., Breslavsky, I.D., Ferrari, G., Garziera, R., Riabova, K.: Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. J. Sound Vib. 385, 81–92 (2016)

    Article  Google Scholar 

  48. Breslavsky, I.D., Amabili, M., Legrand, M.: Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333(19), 4668–4681 (2014)

    Article  Google Scholar 

  49. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)

    Article  MATH  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 12102242, 12172199, 12172086) and the Program of Shanghai Municipal Education Commission (Grant No. 2019-01-07-00-09- E00018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Ding or Lijun Zhang.

Ethics declarations

Data availability

Enquiries about data availability should be directed to the authors.

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ding, H., Zhang, L. et al. Solitary waves and chaos in nearly compressible thermo-hyperelastic cylinder. Nonlinear Dyn 111, 5615–5628 (2023). https://doi.org/10.1007/s11071-022-08099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08099-7

Keywords

Navigation