Skip to main content
Log in

Radial nonlinear vibrations of thin-walled hyperelastic cylindrical shell composed of Mooney–Rivlin materials under radial harmonic excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the radial nonlinear vibrations are investigated for a thin-walled hyperelastic cylindrical shell composed of the classical incompressible Mooney–Rivlin materials subjected to a radial harmonic excitation. Using Lagrange equation, Donnell’s nonlinear shallow-shell theory and small strain assumption, the nonlinear differential governing equation of motion is obtained for the incompressible Mooney–Rivlin material thin-walled hyperelastic cylindrical shell. The differential governing equation of motion is simplified to a generalized Duffing equation with the quadratic term. The second-order approximate analytical solutions are obtained by using the modified Lindstedt–Poincaré (MLP) method. The impacts of the parameters on the amplitude–frequency response curves and number of the equilibrium points are analyzed. According to Runge–Kutta method, the bifurcation diagrams, Lyapunov exponents and Poincaré maps are obtained. The chaotic behaviors are found in the radial nonlinear vibrations of the incompressible Mooney–Rivlin material thin-walled hyperelastic cylindrical shell. The results demonstrate that the nonlinear dynamic responses of the incompressible Mooney–Rivlin material thin-walled hyperelastic cylindrical shell are highly sensitive to the structural parameters and external excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)

    Google Scholar 

  2. Jafari, A.A., Khalili, S.M.R., Tavakolian, M.: Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer. Thin-Walled Struct. 79, 8–15 (2014)

    Google Scholar 

  3. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018)

    Google Scholar 

  4. Wang, Y., Wu, D.: Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp. Sci. Technol. 66, 83–91 (2017)

    Google Scholar 

  5. Han, Y.Y., Zhu, X., Li, T.T., Yu, Y.Y., Hu, X.F.: Free Vibration and elastic critical load of functionally graded material thin cylindrical shells under internal pressure. Int. J. Struct. Stabil. Dyn. 18, 1850138 (2018)

    MathSciNet  Google Scholar 

  6. Awrejcewicz, J., Krysko, V.A., Saveleva, N.N.: Bifurcation and chaos of closed flexible cylindrical shells. Int. Conf. Vibr. Eng. 50, 247–274 (2005)

    MATH  Google Scholar 

  7. Shen, H.S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin-Walled Structures. 124, 151–160 (2018)

    Google Scholar 

  8. Zhu, X., Ye, W.B., Li, T.Y., Chen, C.: The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method. Ocean Eng. 58, 22–26 (2013)

    Google Scholar 

  9. Qin, Z.Y., Pang, X.J., Safaei, B., Chu, F.L.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Google Scholar 

  10. Gonçalves, P.B., Soares, R.M., Pamplona, D.: Nonlinear vibrations of a radially stretched circular hyperelastic membrane. J. Sound Vib. 327, 231–248 (2009)

    Google Scholar 

  11. Soares, R.M., Gonçalves, P.B.: Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane. Int. J. Solids Struct. 49, 514–526 (2012)

    Google Scholar 

  12. Wang, Y., Ding, H., Chen, L.Q.: Nonlinear vibration of axially accelerating hyperelastic beams. Int. J. Non-Linear Mech. 99, 302–310 (2018)

    Google Scholar 

  13. Amabili, M., Balasubramanian, P., Breslavsky, I.D., Ferrari, G., Garziera, R., Riabova, K.: Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. J. Sound Vib. 385, 81–92 (2016)

    Google Scholar 

  14. Tripathi, A., Bajaj, A.K.: Design for 1:2 internal resonances in in-plane vibrations of plates with hyperelastic materials. J. Vib. Acoust. Trans. ASME 136(6), 061005 (2014)

    Google Scholar 

  15. Mao, X.Y., Ding, H., Chen, L.Q.: Forced vibration of axially moving beam with internal resonance in the supercritical regime. Int. J. Mech. Sci. 131–132, 81–94 (2017)

    Google Scholar 

  16. Breslavsky, I.D., Amabili, M., Legrand, M.: Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333, 4668–4681 (2014)

    Google Scholar 

  17. Soares, R.M., Gonalves, P.B.: Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation. Meccanica 53, 937–955 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Quart. Appl. Math. 18, 71–77 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Vaidyanathan, S., Volos, C.: Advances and Applications in Chaotic Systems. Studies in Computational Intelligence. 636, (2016)

  20. Thompson, J.M.T., Stewart, H.B.: Nonlinear dynamics and chaos. J. Statal Phys. 78, 1635–1636 (2000)

    Google Scholar 

  21. Lepik, Ü.: Axisymmetric vibrations of elastic-plastic cylindrical shells by Galerkin’s method. Int. J. Impact Eng 18(5), 489–504 (1996)

    Google Scholar 

  22. Karagiozis, K., Amabili, M., Païdoussis, M.P.: Nonlinear dynamics of harmonically excited circular cylindrical shells containing fluid flow. J. Sound Vib. 329, 3813–3834 (2010)

    Google Scholar 

  23. Li, J.B., Fu, Y.B., Chen, F.J.: Chaotic motion and Hamiltonian dynamics of a prestressed incompressible elastic plate due to resonant-triad interactions. Int. J. Bifurc. Chaos 19, 903–921 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Han, Q., Hu, H.Y., Yang, G.T.: A study of chaotic motion in elastic cylindrical shells. Eur. J. Mech. A. Solids 18, 351–360 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Yamaguchi, T., Nagai, K.I.: Chaotic vibrations of a cylindrical shell-panel with an in-plane elastic-support at boundary. Nonlinear Dyn. 13, 259–277 (1997)

    MATH  Google Scholar 

  26. Pang, Z.J., Yu, B.S., Jin, D.P.: Chaotic motion analysis of a rigid spacecraft dragging a satellite by an elastic tether. Acta Mech. 226, 2761–2771 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Xu, J., Yuan, X.G., Ding, H., Niu, D.T., Zhang, W.Z.: Nonlinear vibration analyses of cylindrical shells composed of hyperelastic materials. Acta Mech. Solida Sin. 32, 1–20 (2019)

    Google Scholar 

  28. Anani, Y., Rahimi, G.H.: Stress analysis of rotating cylindrical shell composed of functionally graded incompressible hyperelastic materials. Int. J. Mech. Sci. 108–109, 122–128 (2016)

    Google Scholar 

  29. Aranda-Iglesias, D., Vadillo, G., Rodríguez-Martínez, J.A.: Constitutive sensitivity of the oscillatory behaviour of hyperelastic cylindrical shells. J. Sound Vib. 358, 199–216 (2015)

    Google Scholar 

  30. Zhao, W., Zhang, W., Zhang, J., Yang, S.W.: Wave motion of pre-stressed compressible hyperelastic cylindrical shell under radial perturbation. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1991600

    Article  Google Scholar 

  31. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  32. Reddy, J.N.: Theory and analysis of elastic plates and shells, second edition. J. Am. Chem. Soc. 99, 413–414 (1999)

    Google Scholar 

  33. Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)

    Google Scholar 

  34. Fu, Y.B., Ogden, R.W.: Nonlinear Elasticity: Theory and Applications. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  35. Sheng, G.G., Wang, X.: Nonlinear vibrations of FG cylindrical shells subjected to parametric and external excitations. Compos. Struct. 191, 78–88 (2018)

    Google Scholar 

  36. Xu, J., Yuan, X.G., Zhang, H.W., Zheng, F., Chen, L.Q.: Nonlinear vibrations of thermo-hyperelastic moderately thick cylindrical shells with 2:1 internal resonance. Int. J. Struct. Stab. Dyn. 20(1), 2050067 (2020)

    MathSciNet  Google Scholar 

  37. Zhang, J., Xu, J., Yuan, X.G., Zhang, W.Z., Niu, D.T.: Strongly nonlinear vibrations of a hyperelastic thin-walled cylindrical shell based on the modified Lindstedt–Poincaré method. Int. J. Struct. Stab. Dyn. 19(12), 1950160 (2019)

    MathSciNet  Google Scholar 

  38. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83, 875–893 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139, 72–86 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Okushima, T.: New method for computing finite-time Lyapunov exponents. Phys. Rev. Lett. 91, 254101 (2003)

    Google Scholar 

  41. Bremen, H.F.V., Udwadia, F.E., Proskurowski, W.: An efficient QR based method for the computation of Lyapunov exponents. Physica D. 101, 1–16 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17, 275–291 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Dieci, L., Van Vleck, E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101, 619–642 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Dieci, L.V., Vleck, E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dyn. Differ. Equ. 18, 815–840 (2006)

    MathSciNet  MATH  Google Scholar 

  45. McDonald, E.J., Higham, D.J.: Error analysis of QR algorithms for computing Lyapunov exponents. Electron. Trans. Numer. Anal. 12, 234–251 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Dieci, L., Russell, R.D., Van Vleck, E.S.: On the compuation of lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34, 402–423 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  48. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant Nos. 11832002 and 12072201.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Zhang or Y. F. Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The elements of Eqs. (24)–(31) are given as follows

$$ \begin{aligned} & M_{11} = \pi Rhl\rho ,\;\;M_{22} = \pi Rhl\rho \left( {\frac{{\pi^{2} h^{2} m^{2} }}{{12l^{2} }} + 1} \right), \\ & & M_{12} = M_{21} = 0,\;\;k_{11} = \frac{{4Rhm^{2} \pi^{3} \left( {\mu_{1} + \mu_{2} } \right)}}{l} \\ & k_{12} = k_{21} = - 2hm\pi^{2} \left( {\mu_{1} + \mu_{2} } \right),\;\;k_{22} = \pi hl\left( {\mu_{1} + \mu_{2} } \right)\left( {\frac{4}{R} + \frac{{m^{4} h^{2} \pi^{2} R}}{{3l^{4} }}} \right) \\ & k_{2}^{11} = A_{1} + B,\;\;k_{2}^{12} = k_{2}^{21} = B + S, \\ & k_{2}^{22} = S + U,\;\;k_{3}^{11} = C + D + E,\;\;k_{3}^{12} = k_{3}^{21} = G + H + I, \\ & k_{3}^{22} = E + K + Y \\ \end{aligned} $$
(A1)

where

$$ \begin{aligned} A_{1} & = \frac{{16Rhm^{2} \pi^{3} \left( {\mu_{1} + \mu_{2} } \right)}}{{l^{2} }},\;B = \frac{{8mh\pi^{2} \mu_{2} }}{3l} - \frac{{8mh\pi^{2} \mu_{1} }}{l}, \\ C & = \frac{{45m^{4} \pi^{5} Rh\left( {\mu_{1} + \mu_{2} } \right)}}{{2l^{3} }},\;D = - \frac{{18hm^{3} \mu_{1} \pi^{4} }}{{l^{2} }}, \\ E & = \frac{{15h^{3} m^{6} \pi^{7} R\left( {\mu_{1} + \mu_{2} } \right)}}{{8l^{5} }} - \frac{{5hRm^{4} \pi^{5} \left( {\mu_{1} + \mu_{2} } \right)}}{{2l^{3} }} \\ & \quad + \frac{{27hm^{2} \pi^{3} \mu_{1} }}{4Rl} + \frac{{3hm^{2} \pi^{3} \mu_{2} }}{4Rl}, \\ S & = \frac{{4h^{3} m^{4} \pi^{5} R\left( {\mu_{1} + \mu_{2} } \right)}}{{3l^{4} }} - \frac{{8\pi h\mu_{2} }}{3R} \\ & \quad + \frac{{8\pi h\mu_{1} }}{R} - \frac{{8hRm^{2} \pi^{3} \left( {\mu_{1} + \mu_{2} } \right)}}{{3l^{2} }}, \\ G & = - \frac{{9hm^{3} \pi^{4} \mu_{1} }}{{l^{2} }}, \\ H & = \frac{{15Rh^{3} m^{6} \pi^{7} \left( {\mu_{1} + \mu_{2} } \right)}}{{4l^{5} }} - \frac{{5Rhm^{4} \pi^{5} \left( {\mu_{1} + \mu_{2} } \right)}}{{l^{3} }} \\ & \quad + \frac{{27hm^{2} \pi^{3} \mu_{1} }}{2Rl} + \frac{{3hm^{2} \pi^{3} \mu_{2} }}{2Rl} \\ I & = \frac{{3hm^{3} \mu_{1} \pi^{4} }}{{l^{2} }} - \frac{{9hm\pi^{2} \mu_{1} }}{{R^{2} }} - \frac{{9h^{3} m^{5} \mu_{1} \pi^{6} }}{{4l^{4} }}, \\ U & = \frac{{4hm\pi^{2} \left( {\mu_{1} + \mu_{2} } \right)}}{l} - \frac{{2h^{3} m^{3} \pi^{4} \mu_{1} }}{{l^{3} }} \\ & \quad + \frac{{2h^{3} m^{3} \pi^{4} \mu_{2} }}{{3l^{3} }} - \frac{{16hl\left( {\mu_{1} + \mu_{2} } \right)}}{{R^{2} m}} \\ K & = \frac{{6hm^{3} \mu_{1} \pi^{4} }}{{l^{2} }} - \frac{{18hm\mu_{1} \pi^{2} }}{{R^{2} }} - \frac{{9h^{3} m^{5} \mu_{1} \pi^{6} }}{{2l^{4} }}, \\ Y & = - \frac{{5Rh^{3} m^{6} \pi^{7} \left( {\mu_{1} + \mu_{2} } \right)}}{{4l^{5} }} + \frac{{27h^{3} m^{4} \pi^{5} \mu_{1} }}{{8Rl^{3} }} \\ & \quad + \frac{{3h^{3} m^{4} \pi^{5} \mu_{2} }}{{8Rl^{3} }} + \frac{{9Rhm^{4} \pi^{5} \left( {\mu_{1} + \mu_{2} } \right)}}{{2l^{3} }} \\ & \quad + \frac{{45\pi hl\left( {\mu_{1} + \mu_{2} } \right)}}{{2R^{3} }} - \frac{{9hm^{2} \mu_{1} \pi^{3} }}{2Rl} \\ & \quad + \frac{{3hm^{2} \mu_{2} \pi^{3} }}{2Rl} + \frac{{9Rh^{5} m^{8} \pi^{9} \left( {\mu_{1} + \mu_{2} } \right)}}{{32l^{7} }}. \\ \end{aligned} $$
(A2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Zhang, W., Yuan, X.G. et al. Radial nonlinear vibrations of thin-walled hyperelastic cylindrical shell composed of Mooney–Rivlin materials under radial harmonic excitation. Nonlinear Dyn 111, 19791–19815 (2023). https://doi.org/10.1007/s11071-023-08878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08878-w

Keywords

Navigation