Skip to main content

Advertisement

Log in

Evolutionary dynamics from fluctuating environments with deterministic and stochastic noises

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Uncertainty is ubiquitous and has a significant impact on individuals’ actions. Inspired by the reality, this paper considers a population affected by changing evolutionary environments with both payoff noise and demographic noise. Meanwhile, we discuss two different types of changing environments, one with deterministic fluctuations and the other with stochastic fluctuations. To explore how changing environments influence the dynamics of cooperation, we first build a theoretical model, which introduces a geometric mean instead of an arithmetic mean of growth rate to present a time-dependent performance of cooperation. Through simulation results, we find that a fluctuating environment with the two noises is beneficial for promoting cooperation, and a deterministic environment is better at promoting cooperation than a stochastic environment. Besides, both deterministic and stochastic fluctuations can make the cooperative species get a higher payoff than the defective species, which is the cause of cooperation promotion. Moreover, in an environment with stochastic noises, the type of time-dependent noise distribution has little impact on evolutionary dynamics. In addition, a high noise variance is beneficial for promoting cooperation, but not for maintaining cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Colman, A.M.: The puzzle of cooperation. Nature 440(7085), 744–745 (2006)

    Article  Google Scholar 

  2. Rusch, H., Gavrilets, S.: The logic of animal intergroup conflict: a review. J. Econ. Behav. Organ. 178, 1014–1030 (2020)

    Article  Google Scholar 

  3. Boyd, R., Richerson, P.J.: Culture and the evolution of human cooperation. Philos. Trans. R. Soc. Lond. 364(1533), 3281–3288 (2009)

    Article  Google Scholar 

  4. Hardin, G.: The tragedy of the commons. Science 162(5364), 1243–1248 (1969)

    Google Scholar 

  5. Perc, M., Jordan, J.J., Rand, D.G., et al.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X., Chen, W.: Effects of attitudes on the evolution of cooperation on complex networks. J. Stat. Mech: Theory Exp. 2020(6), 63501–63516 (2020)

    Article  MathSciNet  Google Scholar 

  7. Capraro, V., Perc, M.: Mathematical foundations of moral preferences. J. R. Soc. Interface 18(175), 20200880 (2021)

    Article  Google Scholar 

  8. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  9. Henrich, J., McElreath, R., Barr, A., et al.: Costly punishment across human societies. Science 312(5781), 1767–1770 (2006)

    Article  Google Scholar 

  10. Saeaeksvuori, L., Mappes, T., Puurtinen, M.: Costly punishment prevails in intergroup conflict. Proc. R. Soc. B-Biol. Sci. 278(1723), 3428–3436 (2011)

    Article  Google Scholar 

  11. Sigmund, K., Hauert, C., Nowak, M.A.: Reward and punishment. Proc. Natl. Acad. Sci. U.S.A. 98(19), 10757–10762 (2001)

    Article  Google Scholar 

  12. Hauert, C.: Replicator dynamics of reward and reputation in public goods games. J. Theor. Biol. 267(1), 22–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Szolnoki, A., Perc, M.: Reward and cooperation in the spatial public goods game. EPL 92(3), 38003 (2010)

    Article  Google Scholar 

  14. Forsyth, P., Hauert, C.: Public goods games with reward in finite populations. J. Math. Biol. 63(1), 109–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Andreoni, J., Harbaugh, W., Vesterlund, L., et al.: The carrot or the stick: rewards, punishments, and cooperation. Am. Econ. Rev. 93(3), 893–902 (2003)

    Article  Google Scholar 

  16. Cadsby, C., Croson, R., Marks, M., et al.: Step return versus net reward in the voluntary provision of a threshold public good: an adversarial collaboration. Public Choice 135, 277–289 (2008)

    Article  Google Scholar 

  17. Wang, X., Chen, W.: The evolution of cooperation in public good game with deposit. Chin. Phys. B 28(8), 80201 (2019)

    Article  MathSciNet  Google Scholar 

  18. He, N., Chen, X., Szolnoki, A.: Central governance based on monitoring and reporting solves the collective-risk social dilemma. Appl. Math. Comput. 347, 334–341 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Quan, J., Yang, X., Wang, X., et al.: Withhold-judgment and punishment promote cooperation in indirect reciprocity under incomplete information. EPL 128, 28001 (2020)

    Article  Google Scholar 

  20. Gross, J., De Dreu, C.K.W.: The rise and fall of cooperation through reputation and group polarization. Nat. Commun. 10(1), 776 (2019)

    Article  Google Scholar 

  21. Liu, L., Chen, X., Perc, M.: Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies. Nonlinear Dyn. 97(1), 749–766 (2019)

    Article  MATH  Google Scholar 

  22. Perc, M.: Sustainable institutionalized punishment requires elimination of second-order free-riders. Sci. Rep. 2, 344 (2012)

    Article  Google Scholar 

  23. Sasaki, T., Okada, I., Nakai, Y.: The evolution of conditional moral assessment in indirect reciprocity. Sci. Rep. 7, 41870 (2017)

    Article  Google Scholar 

  24. Zhao, J., Wang, X., Niu, L., et al.: Environmental feedback and cooperation in climate change dilemma. Appl. Math. Comput. 397, 125963 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Zhao, J., Wang, X., Gu, C., et al.: Structural heterogeneity and evolutionary dynamics on complex networks. Dyn. Games Appl. 11(3), 612–629 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, X., Szolnoki, A., Perc, M.: Competition and cooperation among different punishing strategies in the spatial public goods game. Phys. Rev. E 92(1), 012819 (2015)

    Article  MathSciNet  Google Scholar 

  27. Szolnoki, A., Chen, X.: Environmental feedback drives cooperation in spatial social dilemmas. EPL 120(5), 58001 (2017)

    Article  Google Scholar 

  28. Wang, L., Jia, D., Zhang, L., et al.: Lévy noise promotes cooperation in the prisoner’s dilemma game with reinforcement learning. Nonlinear Dyn. 108, 1837–1845 (2022)

    Article  Google Scholar 

  29. Taitelbaum, A., West, R., Assaf, M., et al.: Population dynamics in a changing environment: random versus periodic switching. Phys. Rev. Lett. 125(4), 048105 (2020)

    Article  MathSciNet  Google Scholar 

  30. Perc, M.: Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 75(2), 022101 (2007)

    Article  Google Scholar 

  31. Yan, F., Chen, X., Qiu, Z., et al.: Cooperator driven oscillation in a time-delayed feedback-evolving game. New J. Phys. 23, 53017 (2021)

    Article  MathSciNet  Google Scholar 

  32. Chen, X., Wang, L.: Effects of cost threshold and noise in spatial snowdrift games with fixed multi-person interactions. EPL 90(3), 38003 (2010)

    Article  Google Scholar 

  33. Perc, M.: Coherence resonance in a spatial prisoner’s dilemma game. New J. Phys. 8, 22 (2006)

    Article  Google Scholar 

  34. Perc, M., Marhl, M.: Evolutionary and dynamical coherence resonances in the pair approximated prisoner’s dilemma game. New J. Phys. 8, 142 (2006)

    Article  Google Scholar 

  35. George, W.A., Constable, T., Rogers, T., et al.: Demographic noise can reverse the direction of deterministic selection. Proc. Natl. Acad. Sci. U.S.A. 113(32), E4745–E4754 (2016)

    Google Scholar 

  36. Chen, W., Wang, X., Quan, J.: Evolutionary dynamics of cooperation in multi-game populations. Phys. Lett. A 2022(426), 127882 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stollmeier, F., Nagler, J.: Unfair and anomalous evolutionary dynamics from fluctuating payoffs. Phys. Rev. Lett. 120(5), 058101 (2018)

    Article  Google Scholar 

  38. Perc, M., Szolnoki, A., Szabó, G.: Cyclical interactions with alliance-specific heterogeneous invasion rates. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 75(5), 52102 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 71871173, 72031009, 71871171), Chinese National Funding of Social Sciences (No.20&ZD058), and the Fundamental Research Funds for the Central Universities (WUT: 2022IVA131, 2021III036JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenman Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Quan, J., Wang, X. et al. Evolutionary dynamics from fluctuating environments with deterministic and stochastic noises. Nonlinear Dyn 111, 5499–5511 (2023). https://doi.org/10.1007/s11071-022-08067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08067-1

Keywords

Navigation